Closed-form solutions for GMABs

Mikhail Krayzler, Rudi Zagst, Bernhard Brunner
Agenda

1. Introduction and motivation
2. Valuation model
3. Pricing of GMAB
4. Example
Introduction and motivation

What are Variable Annuities

- **Variable Annuities** (VA) are (deferred), fund-linked annuity and insurance products allowing guaranteed payments and participation in the financial markets at the same time.

- Examples for guaranteed payments include
 - roll-ups
 - ratchets

- Variable annuities are often referred to as GMxB, **Guaranteed Minimum Benefits** of type x:
 - GMDB (Death)
 - GMAB (Accumulation)
 - GMIB (Income)
 - GMWB (Withdrawal)
Introduction and motivation

Markets for Variable Annuities

- **Motivation**
 - Increasing life expectancy
 - Reduction of the state retirement pensions in several countries

- **Consequences**
 - VA - major success story in North American insurance market
 - Rapid growth of VA business in Japan - from $1.3 billion in 2001 to more than $216 billion in 2011 (assets under management)
 - Europe as the latest market for Variable Annuities

- **Risks:** financial, actuarial, behavioral
Introduction and motivation

Our contribution to existing literature

Most of the papers in the academic literature differentiate in: guarantees, financial and insurance models, consideration of policyholder behavior, pricing methods

- Milevsky and Posner [2001] GMDB
- van Haastrecht et al. [2009] GMAB
- Boyle and Hardy [2003], Marshall et al. [2010] GMIB
- Milevsky and Salisbury [2006], Jaimungal et al. [2012] GMWB
- Bauer et al. [2008], Bacinello et al. [2011] general framework for pricing GMxB’s.

Our contribution: Derivation of explicit solutions for the prices of GMAB products currently offered on the market in a hybrid model for insurance and market risks.
Valuation model

Financial market model

Let \((\Omega, \mathcal{F}, \mathbb{F}, \mathbb{Q})\) be a filtered probability space with \(\mathbb{Q}\) being a risk-neutral measure

Financial market under \(\mathbb{Q}\) is described via Hull-White-Black-Scholes hybrid model with time-dependent volatility (HWBStdv)

\[
 dr(t) = (\theta_r(t) - a_r(t))dt + \sigma_r dW^r(t),
\]

\[
 dY(t) = \left(r(t) - \frac{1}{2} \sigma_Y^2(t) \right) dt + \sigma_Y(t) dW^Y(t),
\]

where \(Y(t) = \ln(S(t)/S(0))\) and \(dW^r(t) dW^Y(t) = \rho dt\).
Random lifetime of a person aged x at $t = 0$ is modeled as a stopping time τ_x of a counting process $\mathcal{N}_{x+t}(t)$ with corresponding mortality intensity $\lambda_{x+t}(t)$.

Two subfiltrations $\mathcal{G} = (\mathcal{G}_t)_{t \geq 0}$ and $\mathcal{H} = (\mathcal{H}_t)_{t \geq 0}$ of \mathcal{F}:

$$\mathcal{G}_t = \sigma(\lambda_{x+s}(s) : s \leq t), \quad \mathcal{H}_t = \sigma(\mathbb{1}_{\{\tau_x \leq s\}} : s \leq t).$$

Survival probability measured at time t of a person at the age of $x + t$ to survive up to time T:

$$p_{x+t}(t, T|\mathcal{F}_t) := \mathbb{P}(\tau_x > T|\mathcal{F}_t) = \mathbb{E} \left[e^{-\int_t^T \lambda_{x+s}(s)ds} | \mathcal{F}_t \right]$$
Valuation model

Insurance market model

- Compare the mortality intensity at time 0 with mortality intensity at time t
- Introduce mortality improvement ratio as

$$\xi_{x+t}(t) = \frac{\lambda_{x+t}(t)}{\lambda_{x+t}(0)}$$

Sample path for the mortality improvement ratio
Valuation model

Insurance market model

- We model ξ_t as an extended Vasicek process

 $$d\xi(t) = k(e^{-\gamma t} - \xi(t))dt + \sigma_\xi dW_\xi(t)$$

- Initial mortality intensity is described via Gompertz model

 $$\lambda_{x+t}(0) = bc^{x+t}$$

 and is calibrated to the current life table.

- Future mortality intensity can be calculated as

 $$\lambda_{x+t}(t) = \lambda_{x+t}(0) \cdot \xi(t)$$

- Survival probabilities can be expressed as

 $$p_{x+t}(t, T|\mathcal{F}_t) = C_\lambda(t, T)e^{-D_\lambda(t, T)\lambda_{x+t}(t)},$$

 where $C_\lambda(t, T)$ and $D_\lambda(t, T)$ satisfy two ordinary differential equations, which can be solved analytically.
Pricing of GMAB

Definition

- GMAB provides a policyholder who is alive at the end of the accumulation period T with a benefit $V(T)$, defined as

$$V(T) = \mathbb{1}_{\{\tau > T\}} \max(A(T), G(T))$$

- where $A(T)$ is the account value and $G(T)$ is one of the following guarantees
 - Return of premium: $G(T) = \text{IP}$
 - Roll-up $G(T) = \text{IP} \cdot e^{\delta T}$, where δ is a roll-up rate
 - Ratchet $G(T) = \max_{t_i < T} A(t_i)$

- The time 0 fair value of GMAB can be written as

$$V(0) = \mathbb{E}_Q \left[e^{-\int_0^T r(s)ds} \mathbb{1}_{\{\tau > T\}} \max(A(T), G(T)) \right]$$
Explicit expression for $V(0)$ with $G(T) = IP \cdot e^{\delta T}$ can be derived:

$$V(0) = IP \cdot p_x(0, T) \cdot \Phi \left(\frac{\mu^S_{Y(T)} - \delta T}{\sigma^S_{Y(T)}} \right) + IP \cdot P^m(0, T) \cdot e^{\delta T} \cdot \Phi \left(\frac{\delta T - \mu^T_{Y(T)}}{\sigma^T_{Y(T)}} \right),$$

where Φ is standard normal distribution, $P^m(0, T)$ is mortality-adjusted zero-bond, $\mu^S_{Y(T)}, \sigma^S_{Y(T)}$ are the moments under equity measure \mathbb{Q}^S and $\mu^T_{Y(T)}, \sigma^T_{Y(T)}$ are the moments under forward measure \mathbb{Q}^T.
Pricing of GMAB

Ratchet guarantee

Theorem

Explicit expression for $V(0)$ with $G(T) = \max_{t_i < T} A(t_i)$ can be derived:

$$
V(0) = IP \cdot p_x(0, T) \cdot \left(\Phi_{n-1}(0; -\mu^S_{\Delta k} Y, \Sigma^S_{\Delta k} Y) \right. \\
\left. + \sum_{k=1}^{n-1} \left(\Phi_{n-1}(0; -\mu^S_{\Delta k} Y - \Sigma^S_{\Delta k} Y e_k, \Sigma^S_{\Delta k} Y) \right) \cdot e^{\mu^S_{\Delta n} Y + \frac{\left(\sigma^S_{\Delta n,k} Y \right)^2}{2}} \right),
$$

where e_k is a unit vector, $\mu^S_{\Delta k} Y, \Sigma^S_{\Delta k} Y$ are mean vector and covariance matrix under equity measure Q^S of

$$
\Delta_k Y := \{\Delta_{i,k} Y\}_{i \in \{1,\ldots,n\} \setminus \{k\}}, \quad \Delta_{i,k} Y := \{Y(t_k) - Y(t_i)\}_{i \in \{1,\ldots,n\} \setminus \{k\}}
$$
Example

Setup

- Type of the guarantee: single premium GMAB, $T = 20$ years
- Policyholder: male, 45 years old
- Mortality: German mortality table for 2007/2009
- Financial model: HWBStdv calibrated to the market data as of 30/05/2012 (VSTOXX, EUR swap based yield curve and swaptions)

Ratchet step = 4 years

Roll-up rate = 2%
Sensitivities to product parameters

Roll-up guarantee

<table>
<thead>
<tr>
<th>Roll-up rate</th>
<th>GMAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>102.49</td>
</tr>
<tr>
<td>1.5%</td>
<td>111.51</td>
</tr>
<tr>
<td>3.0%</td>
<td>125.64</td>
</tr>
</tbody>
</table>

Ratchet guarantee

<table>
<thead>
<tr>
<th>Ratchet step</th>
<th>GMAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 years</td>
<td>125.28</td>
</tr>
<tr>
<td>4 years</td>
<td>118.49</td>
</tr>
<tr>
<td>8 years</td>
<td>114.19</td>
</tr>
</tbody>
</table>
Sensitivity analysis (roll-up)

- **Interest rates**

<table>
<thead>
<tr>
<th>IR</th>
<th>Roll-up 1</th>
<th>Roll-up 2</th>
<th>Roll-up 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity(^1)</td>
<td>-4.19%</td>
<td>-6.73%</td>
<td>-10.44%</td>
</tr>
</tbody>
</table>

- **Equity volatility**

<table>
<thead>
<tr>
<th>IR</th>
<th>Roll-up 1</th>
<th>Roll-up 2</th>
<th>Roll-up 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.75%</td>
<td>0.98%</td>
<td>1.19%</td>
</tr>
</tbody>
</table>

\(^1\) based on a parallel shift of 0.01%
Conclusion

- HWBStdv for the financial market
- 2-step approach for stochastic mortality modeling
- Explicit expressions for GMABs with different guarantee riders
- Calibration of the presented hybrid model
- Sensitivity analysis

Outlook

- Pricing of other guarantees (GMIB, GMDB)
- Incorporation of policyholder behavior risk (with Escobar, M., Ramsauer, F., Saunders, D., Zagst, R.)

