Evaluation of proportional portfolio insurance strategies

Prof. Dr. Antje Mahayni

Department of Accounting and Finance, Mercator School of Management, University of Duisburg–Essen

11th Scientific Day of the DGVFM
April 2012, Stuttgart
Origin of Portfolio Insurance

Portfolio Insurance

- **Leland and Rubinstein (1976), The Evolution of Portfolio Insurance**
 - Observation
 - "After the decline of 1973–74, many pension funds had withdrawn from the market (only to miss the rally in 1975)"
 - Idea
 - "If only insurance were available, those funds could be attracted back to the market"

- **Brennan and Schwartz (1976), The Pricing of Equity Linked Life Insurance Policies with an Asset Value Guarantee**

 - Repeated revival of portfolio insurance (PI)
 - Increasing commercial feasibility (decreasing costs of trading and product innovations)
OBPI versus CPPI

Option based portfolio insurance (OBPI)
- Protection **with options**
 - Protective put strategies (static or rolling)
 - Synthetic option strategies
 - **Kinked solution**

Constant proportion portfolio insurance (CPPI)
- Protection **without options**
 - Dynamic portfolio of underlying and risk-free asset
 - Cushion C management technique
 - Cushion $= \text{difference between portfolio value } V \text{ and floor } F$
 - Leverage/multiplier m
 - Exposure E in the risky asset:
 \[E = m \times C \]
 - **Smooth solution**
Important results

→ Diffusion model setup (no jumps)
→ Objective: Maximize expected utility

OBPI

- El Karoui et al. (2005)
 → Terminal wealth constraint
 → Optimal solution: *Reduction of initial investment* (to finance the put option), apply optimal portfolio weights from the unrestricted problem to the reduced initial investment

(C)PPI

→ Terminal guarantee defines a subsistence level (*floor is growing with the risk–free interest rate*)
→ Optimal solution: use optimal portfolio weights from the unrestricted problem as multiple (apply them to the cushion)
Advantages (disadvantages) of (C)PPI method

- Trade off between risk and return
 - PI investor must give up upward participation to achieve the downward protection

- Disadvantage of (C)PPI
 - Asymptotically, the investor gives up more upward participation than OBPI investor
 - Put option is cheaper than zero bond (kinked vs smooth solution)

- Advantage of (C)PPI
 - Simple investment rule (less demanding than synthesizing an option payoff)
 - Easy to explain to the customer
 - (C)PPI can be applied to an infinite investment horizon
Recent developments or popular features in (C)PPI investments

- **Constraints on the investment level**
 - Minimum level of investment in the risky asset

- **Constraints on the leverage**
 - Borrowing restrictions

- **Variable and ’straight–line’ floors**
 - Locking in of profits (*ratcheting*)

- **Variable multiples**
 - Products allow for the multiple to vary over time in relation to the volatility of the risky asset
Outline of the further talk

- Optimality of (constant) proportion portfolio insurance strategies
 - Optimization criteria
 - Black and Scholes model (constant multiple)
 - Stochastic volatility models (constant vs variable multiple)
 - Evaluation of CPPI (constant multiple) vs PPI (time varying multiple) by means of real data
 - (Joint work with Sven Balder and Daniel Zieling)

- Transaction costs
 - Impacts of transaction costs (deterministic trading dates)
 - Optimal trading filter (stochastic trading dates)
 - Evaluation of trigger strategies w.r.t. performance measures (other than the optimization objective)
 - (Joint work with Sven Balder)

- Conclusion and further research
Optimization criteria

Examples: Main objectives
- Expected utility
- Special case: Expected growth rate (*logarithmic utility*)
- Performance measures

Examples: Additional constraints on
- (Maximal and/or minimal) investment fraction
- (Maximal) shortfall probability (VaR, expected shortfall)
- (Maximal) turnover

→ **Keep it simple:** Consider the *growth rate of the cushion* (*logarithmic utility*) without additional restrictions

\[
\frac{1}{T} \ln \frac{C_T}{C_0}
\]
Growth rate (Black and Scholes model)

- Black and Scholes model (constant drift μ and volatility σ) for the index dynamics S

 \[\frac{1}{T} \ln \frac{S_T}{S_0} \sim \mathcal{N}(\tilde{\mu}, \sigma) \text{ where } \tilde{\mu} = \mu - \frac{1}{2} \sigma^2 \]

- Consider a constant leverage m (on the cushion)

 \[\frac{1}{T} \ln \frac{C_T^m}{C_0^m} = \phi(m) + m \left(\frac{1}{T} \ln \frac{S_T}{S_0} \right) \]

 where $\phi(m) = -(m - 1) \left(r + \frac{1}{2} m \sigma^2 \right)$
Leverage m implies a correction term:

\[
\begin{align*}
< 0 & \quad \text{for } m > 1 \quad \text{convex strategy} \\
= 0 & \quad \text{for } m = 1 \quad \text{linear strategy} \\
> 0 & \quad \text{for } m < 1 \quad \text{concave strategy}
\end{align*}
\]

Convex strategy (momentum strategy):

→ *Buy high and sell low*
→ Performance is penalized by round-turns of the risky asset
→ Is only optimal if the volatility is not too high (in comparison to the excess return of the risky asset)

Growth optimal leverage:

\[
m^* = \frac{1}{2} + \frac{\tilde{\mu} - r}{\sigma^2} = \frac{\mu - r}{\sigma^2}
\]
Illustration – Expected (cushion) growth rate

BS parameter: $\mu = 0.096$, $\sigma = 0.15$, $r = 0.03$

Optimal multiple $m^* = 2.93$
Stochastic volatility

Stochastic volatility (no jumps!)

- Diffusion setup for asset S and variance dynamics σ^2
- Correction term (σ stochastic)

$$\phi_{t,T}^{sv}(m) = - (m - 1) \left(r + \frac{1}{2} m \bar{\sigma}^2_{t,T} \right)$$

where $\bar{\sigma}_{t,T} = \sqrt{\frac{1}{T - t} \int_t^T \sigma^2_u \, du}$

- Optimal multiplier
 - No inter–temporal hedging demand for logarithmic utility
 - Is given by the portfolio weights of an investor with a very short investment horizon (myopic demand)

$$m_t^{*,sv} = \frac{\mu_t - r_t}{\sigma_t^2} = \frac{\lambda_t}{\sigma_t^2}$$
Equity risk premium

- Usual assumption
 - Risk premium is proportional to the variance, i.e. \(\lambda_t = \bar{\lambda} \sigma^2_t \)
 - Sharpe ratio is increasing in volatility
- (One) alternative assumption
 - Risk premium is proportional to the volatility, i.e. \(\lambda_t = \bar{\lambda} \sigma_t \)
 - Sharpe ratio is constant

Implications for variable multiple strategies

- Products which allow for the multiple to vary over time in relation to the volatility of the risky asset
 - Can not outperform the optimal constant multiple under the usual assumption
 - Can outperform the CPPI if e.g. the Sharpe ratio is constant
Return data (S&P500 – price index)

- Bloomberg data for the time period 1980–2010
 - Daily simple returns
 - Number of observation 7573

- Interest rate data
 - Discount yields of T-Bills (91 days to maturity)

- Summary statistics

<table>
<thead>
<tr>
<th>Average excess return ($\mu - r$)</th>
<th>Standard deviation</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0404527</td>
<td>0.18119</td>
<td>-0.77758</td>
<td>24.9149</td>
</tr>
</tbody>
</table>

- We evaluate yearly growth rates of PPI strategies
- Overlapping years, monthly starting dates
Selection of proportional insurance strategies

- **Benchmark strategies**
 - Static PPI strategy *(buy and hold strategy)* $m = 1$
 - CPPI strategy with $m = 3$

- **Growth optimal strategies**
 - **Optimal constant multiple** strategy

 $$m^{*, \text{const}} = \frac{\mu - r}{\sigma^2} = \frac{0.0404527}{0.18119^2} = 1.23221$$

 - **Variable multiplier** strategy
 - based on historical volatility and
 - based on average of historical vol. and long term vol.

 $$m_{t \text{, hist}}^{\text{var}} = m_{\text{const}} \frac{\sigma}{\sigma_{\text{hist}}}$$
 $$m_{t \text{, mix}}^{\text{var}} = m_{\text{const}} \frac{\sigma}{\sigma_{\text{mix}}}$$

 where σ_{hist} is calculated by a window of 21 days prior to the calculation of m and $\sigma_{\text{mix}} = \frac{\sigma_{\text{hist}} + \sigma}{2}$
Descriptive results

![Box plots showing growth rates from January 1980 to January 2010](image)

Legend:
- m=1
- m=3
- $m^* = 1.23221$
- $m_{\text{var,hist}}$
- $m_{\text{var,mix}}$

- **Motivation and Problem**
 - Constant vs variable multiples
 - Transaction Costs
- **Optimization criteria**
 - Growth optimal leverage
 - Equity risk premium
- **Conclusion and further research**
 - Return data (S&P500 – price index)
Descriptive results

Growth rates Jan 1980 to Jan 1990

- m=1
- m=3
- $m^* = 1.23221$
- $m_{\text{var hist}}$
- $m_{\text{var mix}}$

Prof. Dr. Antje Mahayni
Descriptive results

Growth rates Jan 1990 to Jan 2000

$m=1$
$m=3$
$m^* = 1.23221$
$m_{t, hist}$
$m_{t, mix}$
Descriptive results
Mean yearly growth rates (and standard deviations) of selected PPI strategies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = 1$</td>
<td>0.0153</td>
<td>0.0221</td>
<td>0.1082</td>
<td>-0.0763</td>
</tr>
<tr>
<td></td>
<td>(0.1733)</td>
<td>(0.1684)</td>
<td>(0.0914)</td>
<td>(0.2045)</td>
</tr>
<tr>
<td>$m = 3$</td>
<td>-0.0581</td>
<td>-0.0402</td>
<td>0.2669</td>
<td>-0.3786</td>
</tr>
<tr>
<td></td>
<td>(0.5970)</td>
<td>(0.5657)</td>
<td>(0.2631)</td>
<td>(0.7384)</td>
</tr>
<tr>
<td>m^*,const</td>
<td>0.0141</td>
<td>0.0227</td>
<td>0.1306</td>
<td>-0.1011</td>
</tr>
<tr>
<td></td>
<td>(0.2166)</td>
<td>(0.2093)</td>
<td>(0.1120)</td>
<td>(0.257436)</td>
</tr>
<tr>
<td>$m_{t}^{\text{var,\text{hist}}}$</td>
<td>0.0244</td>
<td>0.0355</td>
<td>0.1563</td>
<td>-0.0922</td>
</tr>
<tr>
<td></td>
<td>(0.2533)</td>
<td>(0.2738)</td>
<td>(0.1924)</td>
<td>(0.2441)</td>
</tr>
<tr>
<td>$m_{t}^{\text{var,mix}}$</td>
<td>0.0196</td>
<td>0.0271</td>
<td>0.1304</td>
<td>-0.0826</td>
</tr>
<tr>
<td></td>
<td>(0.2075)</td>
<td>(0.2206)</td>
<td>(0.1225)</td>
<td>(0.2231)</td>
</tr>
</tbody>
</table>

Mean growth rate of variable multiple strategy (hist. vola) is larger than the one of the *optimal* constant multiple (*but no significant results*)
Transaction costs

... are important in the context of PI strategies

→ Reduction (increase) of the asset exposure in falling (rising) markets
→ Investor suffers from any round–turn of the asset price
→ Volatility has a negative impact on the return
→ Effect is particularly severe if there are in addition transaction costs, i.e. the effect is even leveraged by the transaction costs

- **Intuition (PPI):** Growth optimal multiple under transaction costs is lower than without transaction costs

- **Comparison to OBPI:**
 → Accounting of transaction costs implies higher option prices
 → Reduction of initial investment (to finance the put option) is higher
 → Lower leverage
Discrete–time PPI implementation

- Equidistant set of discrete trading dates

\[T = \{ t_0 = 0 < t_1 < \cdots < t_{n-1} < t_n = T \} \]

- Discrete–time cushion dynamics \textbf{without transaction costs}

\[
C_{t_{k+1}}^{\text{Dis}} = e^{r(t_{k+1} - \min\{\bar{\tau}, t_{k+1}\})} \prod_{i=1}^{\min\{\bar{\tau}, k+1\}} \left(m \frac{S_{t_i}}{S_{t_{i-1}}} - (m - 1)e^{r \frac{T}{n}} \right)
\]

- Discrete–time cushion dynamics \textbf{with proportional transaction costs}

(transaction costs are financed by a cushion reduction, \(C_{t_{k+1}^+} \) denotes the floor after transaction costs)

\[
C_{t_{k+1}^+} = C_{t_{k+1}} - m\theta \max\{ C_{t_{k+1}^+}, 0 \} - C_{t_k} \left(\frac{S_{t_{k+1}}}{S_{t_k}} \right)
\]
Cushion dynamics with transaction costs

Three cases
- Increasing exposure due to rising markets
- Reduction of exposure due to decreasing markets
- Cash–lock – gap event due to extreme decrease in asset prices

Formally
- For $C_{t_k}^+ \leq 0$ it follows $C_{t_{k+1}}^+ = C_{t_{k+1}} = e^{r \frac{T}{n}} C_{t_k}^+$
- Otherwise

$$C_{t_{k+1}}^+ = \begin{cases}
C_{t_k}^+ \left(\frac{1+\theta}{1+\theta m} m \frac{S_{t_{k+1}}}{S_{t_k}} - \frac{m-1}{1+\theta m} e^{r \frac{T}{n}} \right) & \text{for } e^{r \frac{T}{n}} \leq \frac{S_{t_{k+1}}}{S_{t_k}} \\
C_{t_k}^+ \left(\frac{1-\theta}{1-\theta m} m \frac{S_{t_{k+1}}}{S_{t_k}} - \frac{m-1}{1-\theta m} e^{r \frac{T}{n}} \right) & \text{for } \frac{m-1}{m(1-\theta)} \leq e^{r \frac{T}{n}} < \frac{S_{t_{k+1}}}{S_{t_k}} \\
C_{t_k}^+ \left((1 - \theta) m \frac{S_{t_{k+1}}}{S_{t_k}} - (m - 1) e^{r \frac{T}{n}} \right) & \text{for } \frac{S_{t_{k+1}}}{S_{t_k}} < \frac{m-1}{m(1-\theta)} e^{r \frac{T}{n}}
\end{cases}$$

Prof. Dr. Antje Mahayni
Evaluation of proportional portfolio insurance strategies 20/31
Remark – Volatility adjustments

Remark – Volatility adjustments ($\Delta t = \frac{T}{n}$ is small)

- **OBPI:**
 - Adjustment of option price to (proportional) transaction costs
 - Leland (1985) approach: Option volatility is adjusted to θ
 \[
 \sigma_{\text{adjusted}}^2 = \sigma^2 \left(1 + \sqrt{\frac{2}{\pi}} \frac{\theta}{\sigma \sqrt{\Delta t}} \right)
 \]

- **PPI:**
 - Similar reasoning implies an adjusted multiple $m^*,\text{adjusted}$, i.e.
 \[
 m^*,\text{adjusted} = \frac{\mu - r}{\sigma^2} - \sqrt{\frac{2}{\pi}} \frac{\theta}{\sigma \sqrt{\Delta t}}
 \]
High turnovers are normally controlled by a trading filter

Example:

→ Use sequence of stopping times (trading dates) τ_i
→ Refer to discounted price movements $\hat{R}_{t,T} := e^{-r(T-t)} \frac{S_T}{S_t}$
→ Define trading filter by

$$\tau_{i+1} = \inf \left\{ t \geq \tau_i \middle| \left\{ \hat{R}_{\tau_i,t} \geq (1 + \kappa) \right\} \cup \left\{ \hat{R}_{\tau_i,t} \leq (1 - \kappa) \right\} \right\}$$

→ κ can take into account gap risk
Optimal trigger level

Optimization problem

\[\kappa^*(m) := \arg\max_{\kappa \leq \kappa_{\text{max}}} E_{\tau_k} \left[\frac{1}{\tau_{k+1} - \tau_k} \ln \frac{C_{\tau_k+1} +}{C_{\tau_k+}} \right] \]

where \(\kappa_{\text{max}} := 1 - \frac{m - 1}{m(1 - \theta)} \)

→ **Condition** \(\kappa \leq \kappa_{\text{max}} \) prohibits gap risk
→ **Black Scholes model**: Quasi closed-form solution
→ **Optimal trigger** \(\kappa^*(m) \) can be computed (tractably)
→ **Overall optimal multiplier and trigger combination**
Illustration – Optimal trigger level

Parameter setup

→ Parameters of the Black and Scholes model are

\[\mu = 0.096, \sigma = 0.15 \text{ and } r = 0.03 \]

→ Proportional transaction costs with \(\theta = 0.001 \)

Optimal trigger level \(\kappa^*(m) \)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\kappa^*(m))</th>
<th>(\kappa_{\text{max}}(m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>0.06</td>
<td>0.50</td>
</tr>
<tr>
<td>2.93</td>
<td>0.07</td>
<td>0.34</td>
</tr>
<tr>
<td>4.00</td>
<td>0.06</td>
<td>0.25</td>
</tr>
<tr>
<td>6.00</td>
<td>0.05</td>
<td>0.17</td>
</tr>
<tr>
<td>8.00</td>
<td>0.04</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Performance measures

Consider impact of trigger trading w.r.t. other performance measures, i.e.

<table>
<thead>
<tr>
<th>Performance measure</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharpe ratio</td>
<td>$\frac{E[V_T - V_0 e^{rT}]}{\sqrt{\text{Var}[V_T]}}$</td>
</tr>
<tr>
<td>Omega measure with level K</td>
<td>$\frac{E[\max{V_T - K, 0}]}{E[\max{K - V_T, 0}]}$</td>
</tr>
<tr>
<td>Sortino ratio with level K</td>
<td>$\frac{E[V_T - K]}{\sqrt{E[(\max{K - V_T, 0})^2]}}$</td>
</tr>
<tr>
<td>Upside potential ratio</td>
<td>$\frac{E[\max{V_T - K, 0}]}{\sqrt{E[(\max{K - V_T, 0})^2]}}$</td>
</tr>
</tbody>
</table>

→ Continuous–time trading and no transaction costs
→ Closed–form solutions for Black and Scholes model
Remark – Performance measures without transaction costs

Illustration – Performance measures without transaction costs

→ BS parameter: $\mu = 0.096, \sigma = 0.15, r = 0.03$

→ Investment horizon $T = 1$ year, terminal guarantee $G = 80$

→ Continuous–time strategies, initial investment $V_0 = 100$, level $K = V_0 e^{rT}$
Illustration – Performance (daily rebalancing)

<table>
<thead>
<tr>
<th>m</th>
<th>Growth rate cushion</th>
<th>Mean V_T</th>
<th>Stdv V_T</th>
<th>Sharpe ratio</th>
<th>Sortino ratio</th>
<th>Upside potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>m=1</td>
<td>0.083</td>
<td>104.584</td>
<td>3.711</td>
<td>0.415</td>
<td>0.948</td>
<td>1.433</td>
</tr>
<tr>
<td></td>
<td>(0.988)</td>
<td>(1.000)</td>
<td>(0.999)</td>
<td>(0.985)</td>
<td>(0.978)</td>
<td>(0.987)</td>
</tr>
<tr>
<td>m=2</td>
<td>0.110</td>
<td>106.126</td>
<td>8.020</td>
<td>0.384</td>
<td>0.969</td>
<td>1.487</td>
</tr>
<tr>
<td></td>
<td>(0.950)</td>
<td>(0.999)</td>
<td>(0.994)</td>
<td>(0.956)</td>
<td>(0.938)</td>
<td>(0.962)</td>
</tr>
<tr>
<td>m=2.93</td>
<td>0.112</td>
<td>107.559</td>
<td>12.725</td>
<td>0.355</td>
<td>0.987</td>
<td>1.536</td>
</tr>
<tr>
<td></td>
<td>(0.891)</td>
<td>(0.996)</td>
<td>(0.986)</td>
<td>(0.935)</td>
<td>(0.900)</td>
<td>(0.938)</td>
</tr>
<tr>
<td>m=4</td>
<td>0.0857</td>
<td>109.175</td>
<td>19.127</td>
<td>0.320</td>
<td>1.004</td>
<td>1.588</td>
</tr>
<tr>
<td></td>
<td>(0.762)</td>
<td>(0.993)</td>
<td>(0.974)</td>
<td>(0.910)</td>
<td>(0.857)</td>
<td>(0.911)</td>
</tr>
<tr>
<td>m=6</td>
<td>-0.045</td>
<td>112.079</td>
<td>35.205</td>
<td>0.257</td>
<td>1.029</td>
<td>1.675</td>
</tr>
<tr>
<td></td>
<td>(0.982)</td>
<td>(0.939)</td>
<td>(0.865)</td>
<td>(0.777)</td>
<td>(0.858)</td>
<td></td>
</tr>
<tr>
<td>m=8</td>
<td>-0.283</td>
<td>114.697</td>
<td>59.176</td>
<td>0.197</td>
<td>1.040</td>
<td>1.745</td>
</tr>
<tr>
<td></td>
<td>(0.965)</td>
<td>(0.893)</td>
<td>(0.823)</td>
<td>(0.697)</td>
<td>(0.803)</td>
<td></td>
</tr>
</tbody>
</table>

In bracket: Percentage of no transaction cost value

Prof. Dr. Antje Mahayni
Evaluation of proportional portfolio insurance strategies
Illustration – Performance (daily vs trigger rebalancing)

<table>
<thead>
<tr>
<th>m</th>
<th>Growth rate</th>
<th>Mean V_T</th>
<th>Stdv V_T</th>
<th>Sharpe ratio</th>
<th>Sortino ratio</th>
<th>Upside potential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cushion $E[V_T]$</td>
<td>$\sqrt{\text{Var}[V_T]}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily rebalancing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m=2.93</td>
<td>0.112</td>
<td>107.559</td>
<td>12.725</td>
<td>0.355</td>
<td>0.987</td>
<td>1.536</td>
</tr>
<tr>
<td></td>
<td>(0.891)</td>
<td>(0.996)</td>
<td>(0.986)</td>
<td>(0.935)</td>
<td>(0.900)</td>
<td>(0.938)</td>
</tr>
<tr>
<td>m=8</td>
<td>-0.283</td>
<td>114.697</td>
<td>59.176</td>
<td>0.197</td>
<td>1.040</td>
<td>1.745</td>
</tr>
<tr>
<td></td>
<td>(0.965)</td>
<td>(0.893)</td>
<td>(0.823)</td>
<td>(0.697)</td>
<td>(0.803)</td>
<td></td>
</tr>
<tr>
<td>Trigger trading with $\kappa = 0.07$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m=2.93</td>
<td>0.121</td>
<td>107.801</td>
<td>12.685</td>
<td>0.375</td>
<td>1.045</td>
<td>1.585</td>
</tr>
<tr>
<td></td>
<td>(0.964)</td>
<td>(0.999)</td>
<td>(0.995)</td>
<td>(0.979)</td>
<td>(0.966)</td>
<td>(0.979)</td>
</tr>
<tr>
<td>m=8</td>
<td>-0.295</td>
<td>117.863</td>
<td>59.872</td>
<td>0.247</td>
<td>1.287</td>
<td>1.976</td>
</tr>
<tr>
<td></td>
<td>(0.992)</td>
<td>(0.977)</td>
<td>(0.964)</td>
<td>(0.931)</td>
<td>(0.956)</td>
<td></td>
</tr>
<tr>
<td>Trigger trading with $\kappa = 0.04$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m=2.93</td>
<td>0.120</td>
<td>107.780</td>
<td>12.772</td>
<td>0.371</td>
<td>1.046</td>
<td>1.589</td>
</tr>
<tr>
<td></td>
<td>(0.955)</td>
<td>(0.999)</td>
<td>(0.994)</td>
<td>(0.973)</td>
<td>(0.958)</td>
<td>(0.974)</td>
</tr>
<tr>
<td>m=8</td>
<td>-0.232</td>
<td>117.548</td>
<td>62.130</td>
<td>0.233</td>
<td>1.313</td>
<td>2.001</td>
</tr>
<tr>
<td></td>
<td>(0.989)</td>
<td>(0.966)</td>
<td>(0.948)</td>
<td>(0.900)</td>
<td>(0.936)</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion and further research – PPI with variable multiplier

- Simple PPI: Floor is growing with risk–free interest rate
 → Optimization problem can be formulated w.r.t. the cushion
- Rule based multiple $m = \frac{\mu - r}{\sigma^2}$ has its merits
 → Expected (cushion) growth maximizing strategy
- Interesting question: Constant or variable multiple (risk premium proportional to σ^2 or to σ)
- Further research is needed to exploit the data adequately
 → Bootstrap (simulation) technique
 → Trade–off between larger set of observations and prevailing the data structure
Conclusion and further research – Transaction costs

- **Transaction costs**
 - Impact is similar for both PPI and OPBI
 - Adjustment of multiple (adjustment of all-in volatility for option pricing)

- **Trading filter**
 - Do not use the same filter for different multiples
 - Black and Scholes model: Growth optimal trading filter is **tractable to implement**
 - It seems to be **robust** w.r.t. other **performance measures** (Sharpe ratio, Sortino ratio, upside potential ratio)
 - Question: *How robust is the optimal BS-trading filter w.r.t. real data?*
Deviations from simple PPI’s

→ Many products rely on a **variable floor**

→ Example (**ratcheting**)

\[F_t = \alpha M_t = \alpha \max\{ M_0 e^{\lambda t}, V_s e^{\lambda (t-s)}; s \leq t \} \]

→ \(M_0 \) denotes the all–time–high at \(t = 0 \)

→ PPI products use \(\lambda = 0 \) instead of (the tractable) \(\lambda = r \)

→ We also need to consider the **capped version** of all strategies, i.e.

\[E_t = \min\{ mC_t, wV_t \} \]