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Introduction

Machine learning advances at an un-
precedented pace these days. ML al-
gorithms can read traffic lights and
are expected to drive cars soon. From
an actuarial perspective, the next
step is necessarily that they adequa-
tely reserve for accidents they might
cause.

Jokes aside, the question of how and
how much such algorithms can be
integrated into the reserving proces-
ses of insurance companies is very
real and urgent. Companies making
use of these new solutions might gain
an edge over their competitors, while
at the same time laying themselves
open to critics, for example, for lack
of transparency.

The “Actuarial Loss Prediction” (ALP)
competition aimed to further this di-
scussion by creating a reserving chal-
lenge that goes beyond conventional
methods. The challenge was hosted
on Kaggle, the leading platform for
data science competitions with a
community of over 8 million data
scientists, and was presented as fol-
lows (see [1]):

,The Actuaries Institute of Australia,
Institute and Faculty of Actuaries and
the Singapore Actuarial Society are
delighted to host the Actuarial loss
prediction competition 2020/21 to
promote development of data analy-
tics talent especially among actua-
ries. The challenge is to predict Wor-
kers Compensation claims using
highly realistic synthetic data.

The data is fully synthetic and not
specific to any legal jurisdiction or
country. We are grateful to Colin

Priest for building and supplying the
dataset.

We invite the competitors to take
claims inflation into account.”

The ALP ran from December 2020 to
April 2021, keeping 140 teams of ac-
tuaries and data scientists busy. At
the end we retained the second place
and some good insights about how
machine learning in reserving might
look like in the future, which we
would like to share in this article.

Aim of the competition

The introduction of the ALP already
provides a succinct description of the
aim: “The challenge is to predict
Workers Compensation claims using
highly realistic synthetic data.”. In
this section, we provide a bit more
detail on the aim of the competition
and the scoring metric.

The 90.000 rows dataset was divided
into a train set (54.000 rows) and a
test set (36.000 rows). The test data
was further split equally into a public
and a private test set. The former was
publicly available and was used to
score the models throughout the com-
petition. The latter was retained by the
competition host and only used once
at the end of the competition for the
final evaluation of the models. The
predictions were scored according to
the root mean squared error (RMSE).

Data Exploration

The train dataset contained the fields
below. The test dataset contained
the same fields except for the ex-
plained variable Ultimatelncurred-
ClaimCost.

e ClaimNumber: Unique policy
identifier

e DateTimeOfAccident: Date and
time of accident

e DateReported: Date the acci-
dent was reported

e Age: Age of the worker

* Gender: Gender of the worker

e MaritalStatus: Martial status of
the worker: (Married, (S)ingle,
(U)nknown

e DependentChildren: The num-
ber of dependent children

* DependentsOther: The number
of dependants excluding chil-
dren

*  WeeklyWages:
wage

e PartTimeFullTime: Whether the
worker was employed (P)art time
or (Full time

* HoursWorkedPerWeek:
hours worked per week

e DaysWorkedPerWeek: Number
of days worked per week

e ClaimDescription: Free text de-
scription of the claim

* InitialincurredClaimCost: Initial
estimate by the insurer of the
claim cost

* UltimatelncurredClaimCost: To-
tal claims payments by the insu-
rance company

Total ~ weekly

Total

Some records in the train dataset
were erroneous. For instance, for 37
records the value of HoursWorked-
PerWeek was greater than 168 hours.
In 122 rows the WeeklyWages was 1,
a value that seemed unrealistic con-
sidering other values of the column.
These data points were either remo-
ved or recoded based on expert judg-
ment.

Some records in the train dataset
were implausible due to extreme va-
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lues of either the dependent variable
or the independent variables. If we
were unable to ascertain the reason
for the extreme value based on the
available information, we removed
the record from the dataset. One
cannot expect a model to predict an
extreme value, if one itself cannot
explain it. For instance, the largest
ultimate claim was 4 million — about
5 times higher than the second lar-
gest ultimate claim —, but none of
the explanatory variables suggested
such a high claim.

It may have been possible to ac-
count for those extreme data points
via the evaluation metric, had the
metric been free to choose. Howe-
ver, the evaluation metric could not
be changed and was by nature sen-
sitive to prediction errors that are
large in absolute terms. Therefore,
the best decision seemed to be the
removal of those few extreme data
points.

Some new features were added, e.g.
whether the accident happened wit-
hin core working hours. Date(time)
features were also used to create new
variables, such as reporting delay.
The explanatory variables were part-
ly transformed to alleviate or reinfor-
ce the effect of extreme data points.
For instance, the [Initiallncurred-
ClaimCost was transformed with the
natural logarithm function.

Large claims often pose a problem
in non-life reserving. Therefore, it is
common practice to model them se-
parately. Although there are well-es-
tablished techniques for large claim
modelling, there is no clear guidan-
ce on how to decide whether a
claim is large. Accordingly, we tes-
ted different large claim thresholds
and trained models for those claims
separately. Our attempts in this re-
gard were futile. The explicit large
claim modelling did not lead to sig-
nificant model improvements. The-
refore, instead of training different
models depending on the size of the
UltimatelncurredClaimCost, we
combined models — trained on the
whole dataset — based on their abili-
ty to account for large claims. For
more information, please see the
Backtesting section below.

Figure 1:
NLP workflow
Pull | Lacer Finger Bite

Thumb| Arm Cluster_Hand

Natural Language Processing

The chapter is titled Natural Langua-
ge Processing (NLP) because the
ClaimDescription was analyzed in
part with NLP techniques. NLP tech-
niques range from overarching senti-
ment analysis, which describes the
overall emotional content of a piece
of text, to syntactic analysis, which
breaks the text in sentences and to-
kens to be analyzed singularly (e.g.
Google Cloud’s natural language
API, see [2]).

Unfortunately, the full potential of
NLP techniques could not be exploi-
ted because of two reasons. First, the
descriptions were sometimes too
short, ruling out e.g. sentiment ana-
lysis. Second, for data protection rea-
sons some descriptions had been dis-
torted to a point where they became
hardly intelligible, e.g. “TO RIGHT
LEG RIGHT KNEE". Therefore, simp-
le NLP was combined with text ana-
lysis to extract information from the
claim descriptions.

The descriptions were preprocessed
as follows: First, stopwords were re-

moved to reduce the noise in the
data. The set of stopwords were ta-
ken from the nltk corpus ([3]). Se-
cond, the words were lemmatized
using SpaCy ([4]), as well as stem-
med using the SnowBall stemmer of
nltk. Lemmatization reduces the
word to its form that appears in the
dictionary, stemming reduces the
word to its root form. The former
produces semantically meaningful
word forms, whereas the latter may
not. For example, the lemma of la-
cerated is lacerate, the stem form of
lacerated, laceration or lacerate is
lacer.

Next, we introduced 3 categories:
body part, type of wound, and acci-
dent cause. For each category we de-
fined a list of words based on the
dataset as well as our own judgment.
The lists contained words like: ankle,
knee, eye (body parts), strain, bruise,
fracture (types of wound), slip, explo-
sion, spider (accident cause). Moreo-
ver, we grouped these words based
on semantic similarity to allow for
potential inconsistencies in the labe-
ling. For instance, face, cheek and
jaw were clustered together, the rati-
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onale behind being that a face injury
may be very similar to an injury of
the cheek or jaw.

For each word in the lists, a new co-
lumn was created and added to the
dataset. The columns contained the
number of occurrences of the word
in the claim descriptions. For each
cluster, a new column was created as
well. The value of these columns was
1 if any of the words in the cluster
appeared at least once in the claim
description, otherwise 0. All these
numeric columns representing the
claim descriptions were given as in-
puts to the model.

The workflow is summarized in Figu-
re 1 for two claim descriptions: Clus-
tering and stemming make sure that
the model can detect the common
aspect of the two descriptions, i.e. a
laceration on the claimant’s hand,
while differentiating its cause (re-
spectively pulling something and a
bite) and retaining more specific in-
formation.

Modelling with xgboost

We implemented our model in Py-
thon using the xgboost package. In
the words of its own authors, this lib-
rary “implements machine learning
algorithms under the Gradient Boos-
ting framework”. In this section, we
briefly refresh the concepts of ran-
dom forest and gradient boosting,
and then describe the way xgboost
introduces probability distributions
in its algorithms.

Random Forests and
Gradient Boosting

Let us recapitulate the concepts of
random forests and gradient boos-
ting:

e Random forests are made up of
decision trees — hence the “fo-
rest” —, each of which is only all-
owed to train on a randomly se-
lected subset of the training set
— hence the “random”. Each of
the decision trees populating the
forest predicts a result, and a uni-
que result is then provided by
taking the average of all results
(for regression problems) or the

most common one (for classifica-
tion problems).

e Gradient boosting is a machine
learning technique in which the
same algorithm is applied iterati-
vely. After a first prediction has
been provided, we fit a new mo-
del on its residuals - this is the
first boosting round. We can then
combine the first two models
and model their residuals, which
would be the second boosting
round, and so forth.

In combining random forests and
gradient boosting we modify the
classic decision tree algorithm in
two different ways. The predictions
improve at the cost of interpretabili-
ty: building up a forest we lose the
possibility of looking at the indivi-
dual splits of our decision tree, and
each boosting round adds a new fo-
rest. A simple way of visualizing fea-
ture importance is counting how
many times a variable is split on.
More important variables tend to be
selected more often for growing the
tree.

Regression to distributions
in xgboost

Suppose that we want to predict a
numerical outcome Y based on a set
of n dependent Xj,...,X,, and that
we suspect Y to be gamma distribu-
ted with mean p: a common way to
approach this regression problem
would be to set up a generalized li-
near model (GLM) around the equa-
tion

g(u) = log(p) = BX

where 8 = (B4, ..., Bn) is a vector of
regression parameters to be determi-
ned and we used ,log” as link func-
tion. We can determine the fs by
maximizing likelihood.

This approach cannot be translated
directly to decision trees, which de-
scribe the outcome Y in terms of
piecewise constant functions rather
than polynomials. However, it is

Formula 1

possible to introduce the likelihood
in the computation via the loss func-
tion.

The learning process of a machine
learning algorithm is guided by mini-
mizing a loss function. Given a vec-
tor of true values Y and of model out-
comes ¥ we can, for instance, ask for
the ¥ that minimizes the squared er-
ror (Y — Y)? or the squared log error
17+1)2

log (m

One typical issue of the squared er-
ror is that it is driven by large outco-
mes — a small percentual error in pre-
dicting a large value, possibly due to
noise, has a great impact on the
squared error. This effect is tamed by
the squared log error. So we can
choose different loss functions to tar-
get different peculiarities in the data
and guide the learning process of the
algorithm.

Loss functions are in principle fully
customizable, but xgboost already
provides a wide selection, including
the negative of the log likelihood to
gamma and tweedie distributions
with the ,log” link function. Minimi-
zing the negative of the likelihood
obviously maximizes the likelihood;
this is, however, not achieved by fin-
ding the optimal betas (as in GLMs),
but by finding the best splits for each
decision tree.

In practice, for a Gamma distribution
with mean u and shape parameter k

we have the density function

_xk

fkw =——
x k) = E

rdo (k)
We can set the objective parameter
of xgboost to reg:gamma to obtain
the negative log likelihood as loss
function, see Formula 1.

Here k is interpreted as a weight pa-

rameter and defaults to 1. Also notice
that in this computation we took for

Yik;

n
~ Y:k; .
L(?,Y;k) = Z [logr(ki) + % — kilog (T) — (ki — 1)log(m]
=1 i L

i
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simplicity the identity as link func-
tion. For details, please see the source
code of xgboost ([5]) at and the di-
scussion at [6].

Model analysis

An xgboost model can be quite com-
plex. These are some of the parame-
ters that need to be set, with some
sample values:

'objective': 'reg:gamma’,
‘eval_metric':'rmse’,
‘eta': 5e-2,
'max_depth': 4,
'min_child_weight': 6,
'subsample’': 0.7,
‘num_parallel _trees': 50
‘alpha' : 2e+2

For a description and complete list of
parameters, please see the official
xgboost documentation ([71).

We selected the hyperparameters for
our model by specifying a hyperpara-
meter space and looking for the best
combination inside that space by
randomly picking some of the points,
training the respective model and
choosing the one with best RMSE.

Note that this does not guarantee that
the best combination will always be
found: it is important for the search
space to be both large enough to co-
ver different configurations and fine
enough lest we miss good configura-
tions by accident. In practice, deter-
mining the right space is mostly a
trial and error process, where it is
helpful to start with a rather large
grid and then zoom in on the mini-
ma: if we start off with a max depth
interval between 1 and 10 and we
mostly find minima around 4, it
might make sense to restrict the
search interval to numbers between
2 and 6. We determined the initial
hyperparameter space following cur-
rent best practices.

Once the parameters are set, we can
train a model in Python for a given

Illustration 1

import xgboost as xgb
xgb.train(params=parameters,
um_boost_round=3600)

Figure 2:
Model Comparison

Model comparison
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number of boosting rounds as seen in
[llustration 1.

Model comparison

Itis important to understand that the
hyperparameters interact with each
other, and several optimal configu-
rations might be possible. Moreover,
the preprocessing might affect the
choice of hyperparameters. The hy-
perparameter space might need to
be adjusted depending on the out-
put of the preprocessing. In other
words, the preprocessing and the
hyperparameter search are interde-
pendent.

With this remark in mind, we would
like to analyze which aspects played
the most important role in producing
good predictions. In Figure 2, we dis-
play the RMSE of the predictions on
the test dataset for different choices

of hyperparameters and feature engi-
neering: we considered all possible
combinations of the three loss functi-
ons (squared error, gamma distribu-
tion and tweedie distribution), NLP
analysis (with vs without), boosting
(300 boosting rounds vs no boos-
ting), bagging (random forest with 50
trees vs single tree).

In Figure 2, we can see that the major
improvement is brought about by
boosting. It should also be noted that
unboosted models do not appear to
make use of the ClaimDescription
and are not powerful enough to de-
tect the distribution behind the data:
for unboosted models the squared
error is by far the best loss function,
for boosted models it is outperfor-
med by tweedie likelihood.

We also see this in Figure 3, which
compares the drop in RMSE on the

dtrain=xgb.DMatrix(input_data, label=y), n
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test set after each boosting round for
a model with squared error and
tweedie likelihood loss function:
this drop is much more regular for
the squared error loss function,
which is directly related to RMSE,
and more of a side effect for the
tweedie likelihood loss function. In
the latter case the RMSE abruptly
drops in the blue shaded area (boos-
ting rounds 15 to 75) and then stabi-
lizes again.

When preprocessing the data, we
used feature importance as a guideli-
ne to determine how much signal
was detected from each of the expla-
natory variables. Seeing, for exam-
ple, how the weekday of the accident
was deemed important by the model
— hence presumably carried signal —
we clustered the weekday feature
into weekend/non weekend. This
had the effect of both increasing the
carried signal and diminishing over-
fitting. The amount and type of NLP
clusters considered were also largely
guided by merging irrelevant clusters
with similar median ultimate and
breaking up relevant, large clusters
to see if the model could extract
more signal from the single compo-
nents.

Backtesting

In this section we compare the pre-
dictions of the model with the true
ultimates. Unfortunately, it is not
possible to make the comparison on
the test data because the Ultimate-
IncurredClaimCost was not acces-
sible to the participants of the com-
petition. Therefore, to illustrate the
predictive power of the model we
run the backtest on the train dataset.
The results must be interpreted ac-
cordingly.

The input data for the prediction
contained an initial estimation for
the ultimate cost. This initial cost es-
timate proved to be the most power-
ful predictor, which underlines the
importance of human intelligence in
the era of machine learning. The
model essentially took and boosted
this initial estimation using the re-
maining predictors. Therefore, we
included the InitialincurredClaim-
Cost in Figure 4.

Figure 3:
Boosting for different loss functions

Boosting for different loss functions
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Figure 4:

Empirical probability density function of the logarithm of the initial
claim cost estimate, the ultimate incurred claim cost, and the predic-
ted incurred claim costs
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Figure 5:
Percentual error per accident year
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One conundrum of this challenge
was the prediction of large losses.
The models struggled to effectively
identify large claims, that eventually
impaired the prediction accuracy of
non-large claims, too. Small claims
were overestimated, large claims
were underestimated. Therefore, in
the final submission we combined
models in a way that mitigated this
problem: if the mean of the predicti-
ons of a few selected models were
below a certain threshold, we selec-
ted the prediction with the lowest va-
lue, otherwise the one with the hig-
hest value. As a result, the small
claims were overestimated less, and
the predictions for large claims im-
proved as well.

The aim of the competition was mo-
delling the ultimate cost at policy le-
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vel. In the current practice of reser-
ving, however, the ultimate cost is
estimated at an aggregate level. Hen-
ce, it might be instructive to look at
the model performance per accident
year, see Figure 5

On an aggregate level, the predicted
ultimate claim was 1.7% less than
the true ultimate claim. True ultima-
tes and the respective predictions
grow with time — claim inflation was
mentioned by the organizers of the
challenge as being one of the drivers
in the ultimate costs and is correctly
captured by the model. But lack of
interpretability in the models makes
it hard to rely on the results: we do
not have any direct way of explai-
ning why the prediction for 1992 is
off by roughly 10% and for 2003 by
0,3%.
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In interpreting the results, it is im-
portant to remark that we did not
have any additional information for
old claims as compared with the new
ones, i.e. information on claim de-
velopment since the first estimation
was not available.

Conclusion

This competition was an excellent
exercise in applying machine lear-
ning to an actuarial problem. We
tried several different machine lear-
ning algorithms, including neural
networks, but used only xgboost for
our final submission. While boosting
on neural network is a known con-
cept (see e.g. [8], thanks to M. Kier-
mayer for the hint), an off-the-shelf
package equivalent to xgboost is not
readily available, to the best of our
knowledge. Therefore, powerful mo-
dels may remain unexploited only
because they are hard to implement
with the available packages.

Interpretability of the results remained
a problem throughout. A straightfor-
ward way of interpreting the model is
not available yet and is perhaps just
not possible, given the way ML algo-
rithms are constructed. This remains
an open challenge for the future.

In closing, we would like to thank
the organizers and hosts of the com-
petition for this valuable and fun-pa-
cked experience. Also, we would
like to thank W. Abele for his useful
advices and discussions, and the
whole Non-life Actuarial team at De-
loitte for its support.
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