
Schriftliche Prüfung im Fach

Finanzmathematik und Risikobewertung

gemäß Prüfungsordnung 5
der Deutschen Aktuarvereinigung e. V.

am 17.Oktober 2025

Hinweise:

• Als Hilfsmittel ist ein Taschenrechner zugelassen.

• Die Gesamtpunktzahl beträgt 180 Punkte. Die Klausur ist bestanden, wenn mindestens
90 Punkte erreicht werden.

• Bitte prüfen Sie die Ihnen vorliegende Prüfungsklausur auf Vollständigkeit. Die Klausur
besteht aus 28 Seiten.

• Alle Antworten sind zu begründen und bei Rechenaufgaben muss der Lösungsweg er-
sichtlich sein.

• Bitte vermeiden Sie bei der Lösungserstellung die nicht zusammenhängende Streuung
der Lösungen zu den einzelnen Aufgabenteilen.

• Aus Gründen der besseren Lesbarkeit wird auf die gleichzeitige Verwendung der Sprach-
formen männlich, weiblich und divers (m/w/d) verzichtet.

Mitglieder der Prüfungskommission:

Prof. Dr. Peter Albrecht, Prof. Dr. Thomas Knispel,
Prof. Dr. Raimond Maurer



Finanzmathematik und Risikobewertung
am 17.Oktober 2025

Aufgabe 1. [Zahlungsströme, Versicherungs- und Finanzmarktprodukte][18 Punkte]

(a) [3 Punkte] Betrachten Sie einen variabel verzinslichen Titel mit zwei Jahren Laufzeit,
Nennwert 100.000 e und halbjährlich nachschüssigen Zinszahlungen, die an die Ent-
wicklung der Euro-Short-Term-Rate (eSTR) mit einer Fristigkeit von 6 Monaten gekoppelt
sind. Die eSTR-Entwicklung lautet (Zinssätze jeweils in annualisierter Form) 3% (t0 = 0),
4% (t1 = 0,5), 3% (t2 = 1), 2% (t3 = 1,5) und 3% (t4 = 2).

Wie lautet der Zahlungsstrom {Z(ti); i = 1, . . . , 4} der Rückflüsse des variabel verzinslichen
Titels?

(b) [6 Punkte] Gegeben sei eine XY-Aktie mit bekanntem Marktwert s0 in t = 0 und zufalls-
abhängigem Marktwert S4 in t = 4. Betrachten Sie nun ein Garantie-Zertifikat auf eine
Einheit dieser Aktie. Das Zertifikat zahle in t = 4 den Marktwert S4 der Aktie, mindestens
aber 80% des anfänglichen Marktwerts.

(i) [2 Punkte] Stellen Sie zunächst die Rückfluss-Position V4 des Garantie-Zertifikats
zum Zeitpunkt t = 4 formelmäßig dar!

(ii) [4 Punkte] Zerlegen Sie diese Position alternativ auf zwei Weisen so, dass die je-
weilige eingebettete Optionsposition offengelegt wird. Welche Optionen mit welchen
Modalitäten gehen in diese Zerlegungen jeweils ein?

(c) [6 Punkte] Ein Investor besitzt eine YZ-Aktie. Zusätzlich verkauft er nun eine Call-Option
auf diese Aktie. Die Call-Option auf die YZ-Aktie laufe 1 Jahr, habe einen Ausübungspreis
von 130 e sowie einen Marktpreis von 15 e.

(i) [2 Punkte] Welchen Wert besitzt die Gesamtposition (Aktie plus Short Call) nach
einem Jahr? Vernachlässigen Sie dabei den ursprünglichen Kaufpreis der YZ- Aktie.
Berücksichtigen Sie aber, dass der risikofreie Einjahreszins 5% beträgt.

(ii) [4 Punkte] Welches ist der minimale Wert dieser Position (immer noch unter Ver-
nachlässigung des ursprünglichen Kaufpreises der YZ-Aktie)?

Hinweis: Es gilt min{–x, 0} = –max{x, 0}.

(d) [3 Punkte] Eine Aktienanleihe ist ein festverzinslicher Titel, bei dem bei Fälligkeit der An-
leihe die Rückzahlung (Tilgung der Schuld) nicht notwendigerweise zum Nennwert N er-
folgt, sondern - wenn dies für den Emittenten der Anleihe günstiger ist - alternativ eine
bestimmte Anzahl von Aktien geliefert wird.

• Ein Investor erwirbt nun eine vierjährige Aktienanleihe mit laufenden Zinszahlungen
(Kupon) in Höhe von 50 e.

• Bei Fälligkeit der Anleihe kann der Emittent entweder den Nennwert in Höhe von
1.000 e zurückzahlen oder 10 Z-Aktien als Tilgungsleistung andienen.

Stellen Sie den Rückzahlungsstrom des Erwerbers der Anleihe (Investor) formelmäßig
dar!
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Lösungsskizze:

(a) Der Referenzzins für die Zinszahlungen in ti (i = 1, . . . , 4) ist die eSTR in ti–1, die linear auf
die Halbjahresperioden aufgeteilt wird. In t4 erfolgt zusätzlich die Tilgung des Nennwerts.
Es gilt daher:

Z(t1) = 0,03 · 0,5 · 100.000 = 1.500
Z(t2) = 0,04 · 0,5 · 100.000 = 2.000
Z(t3) = 0,03 · 0,5 · 100.000 = 1.500
Z(t4) = 0,02 · 0,5 · 100.000 + 100.000

= 1.000 + 100.000 = 101.000

Der gesuchte Zahlungsstrom lautet somit

Z = {1.500, 2.000, 1.500, 101.000}.

(b) (i) Rückfluss-Position: V4 = max{S4, 0,8 · s0}
(ii) Zerlegung 1: V4 = S4 +max{0,8 · s0 –S4, 0}

Zerlegung 1 beinhaltet einen Put auf die XY-Aktie mit Laufzeit 4 und Ausübungspreis
0,8 · s0.
Zerlegung 2: V4 = 0,8 · s0 +max{S4 – 0,8 · s0, 0}
Zerlegung 2 beinhaltet einen Call auf die XY-Aktie mit Laufzeit 4 und Ausübungspreis
0,8 · s0.

(c) (i) Bezeichne S1 den Wert der YZ-Aktie zum Zeitpunkt 1. Für den Wert V1 der Gesamt-
position gilt somit

V1 = S1 + 15 · 1,05 –max{S1 – 130, 0}.
(ii) Es gilt

S1 –max{S1 – 130, 0} = S1 +min{130 –S1, 0} = min{130,S1}

und damit insgesamt
V1 = min{130,S1} + 15 · 1,05.

Der minimale Wert der Position beträgt damit 15 · 1,05 e.
(d) Bezeichne S4 denWert der Z-Aktie zum Zeitpunkt t = 4. Die Rückzahlung RZ4 der Anleihe

aus Sicht des Investors in t = 4 ist dann gegeben durch

RZ4 = min{1000, 10 · S4}.
Der gesuchte Zahlungsstrom lautet somit

{50, 50, 50, 50 + RZ4}.
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Aufgabe 2. [Individualbewertung] [18 Punkte]

(a) [14 Punkte] Der risikofreudige Dr. Omedar besitzt für x ≥ –100 die Risikonutzenfunktion
u(x) = (x + 100)2.

(i) [2 Punkte] Bestimmen Sie für x > –100 das Arrow-Pratt-Maß für die Risikonutzen-
funktion von Dr. Omedar!

(ii) [6 Punkte] Dr. Omedar wird nun die Möglichkeit geboten, an einer Lotterie teilzuneh-
men. Der Einsatz beträgt dabei 100 e. Mit einer Wahrscheinlichkeit von 10–8 gewinnt
Dr. Omedar eine Million e, ansonsten geht er leer aus.

Ist es für Dr. Omedar vorteilhaft bzw. nicht vorteilhaft, an der Lotterie teilzunehmen,
oder ist er hinsichtlich einer Teilnahme indifferent?

Hinweis: Beachten Sie, dass die Alternative zur Teilnahme an der Lotterie die Nicht-
Teilnahme ist!

(iii) [6 Punkte] Wie verändert sich die Beurteilung von Dr. Omedar gemäß (ii), wenn - bei
unverändertem Einsatz - die Gewinnhöhe verdoppelt wird, die Gewinnwahrschein-
lichkeit sich hingegen halbiert?

(b) [4 Punkte] Das Nullnutzenprinzip für die Bestimmung der Risikoprämie π lautet

E[u(π –S)] = u(0),

wobei S den zu versichernden Schaden bezeichnet. Bestimmen Sie die Prämie π = π(S)
nach dem Nullnutzenprinzip für die Nutzenfunktion u(x) = –exp(–ax) mit Parameter a > 0.

Lösungsskizze:

(a) (i) Das Arrow-Pratt-Maß ist allgemein gegeben durch

r(x) = –u′′(x)/u′(x).

Im vorliegenden Fall gilt u′(x) = 2(x + 100) und u′′(x) = 2. Damit erhalten wir

r(x) = –u′′(x)/u′(x) = – 1

x + 100
.

(ii) Nutzen der Nicht-Teilnahme:

E[u(0)] = u(0) = 1002 = 10.000.

Nutzen der Teilnahme: Aus einer Teilnahme an der Lotterie resultiert die Gewinn-
funktion G als zweiwertige Zufallsgröße mit

P[G = 106 – 100] = 10–8
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sowie
P[G = –100] = 1 – 10–8.

Für u(G) gilt entsprechend

P[u(G) = 1012] = 10–8 sowie P[u(G) = 0] = 1 – 10–8.

Hieraus folgt:
E[u(G)] = 1012 · 10–8 + 0 · (1 – 10–8) = 10.000.

Dr. Omedar ist somit indifferent hinsichtlich der Teilnahme an der ihm angebotenen
Lotterie.

(iii) Der Nutzen der Nicht-Teilnahme lautet unverändert 10.000. Für G resultiert nun

P[G = 2 · 106 – 100] = 1
2 · 10–8

sowie
P[G = –100] = 1 – 1

2 · 10–8.
Des Weiteren gilt

P[u(G) = 4 · 1012] = 1
2 · 10–8 sowie P[u(G) = 0] = 1 – 1

2 · 10–8.
Hieraus folgt insgesamt

E[u(G)] = 4 · 1012 · 12 · 10–8 = 2 · 104 = 20.000.
Für Dr. Omedar ist es somit nun vorteilhaft, an der Lotterie teilzunehmen.

(b) Die Bedingung für die Nullnutzenprämie π lautet in diesem Fall

E[–exp(–a(π –S))] = –exp(–a · 0) = –1.
Hieraus folgt exp(–aπ)E[exp(aS)] = 1, und dies führt insgesamt zum Prämienprinzip („Ex-
ponentielles Prämienprinzip“)

π(S) = 1
a lnE[exp(aS)].
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Aufgabe 3. [Grundprinzipien der Finanzmathematik] [25 Punkte]

Am Finanzmarkt werden Aktien des Ökostromanbieters „Sustainable Energy AG“ liquide ge-
handelt:

• Der Marktpreis der Aktie beträgt aktuell 56 e pro Stück.

• Geld kann zum Zinssatz 5% p. a. risikofrei angelegt bzw. geliehen werden.

Ihr Finanzvorstand bittet Ihr Team, einjährige Finanzderivate auf die Aktie der „Sustainable En-
ergy AG“ zu analysieren. Ihr Team entscheidet sich grundsätzlich für die Modellierung in einem
Einperiodenmodell auf einem Wahrscheinlichkeitsraum (Ω,F ,P) (P=real-world Maß) mit den
primären Finanztiteln „Sparbuch“ (Produkt 0) und „Aktie“ (Produkt 1) mit zugehörigen Preispro-
zessen (S00;S

0
1) bzw. (S

1
0;S

1
1). Nach einem Brainstorming stehen zunächst folgende Finanz-

marktmodelle zur Debatte:

(1) Ω = {ω1,ω2}, F = P(Ω), P[{ω1}] = P[{ω2}] = 1
2 ,

�����:
XXXXXz

S00 = 1
S01(ω1) = 1,05

S01(ω2) = 1,05
�����:
XXXXXz

S10 = 56
S11(ω1) = 84

S11(ω2) = 66

(2) Ω = {ω1,ω2}, F = P(Ω), P[{ω1}] = P[{ω2}] = 1
2 ,

�����:
XXXXXz

S00 = 1
S01(ω1) = 1,05

S01(ω2) = 1,05
�����:
XXXXXz

S10 = 56
S11(ω1) = 84

S11(ω2) = 42

(3) Ω = {ω1,ω2,ω3}, F = P(Ω), P[{ω1}] = 1
2 , P[{ω2}] = P[{ω3}] = 1

4 ,

�����*

HHHHHj

-S00 = 1

S01(ω1) = 1,05

S01(ω2) = 1,05

S01(ω3) = 1,05

�����*

HHHHHj

-S10 = 56

S11(ω1) = 84

S11(ω2) = 84

S11(ω3) = 42

(a) [2 Punkte] Finanzmarktmodell (1) wurde von Ihrem neuen Praktikanten vorgeschlagen.
Erläutern Sie für die Zielperson „Praktikant“ intuitiv (ohne Fachbegriffe wie risikoneutrales
Maß etc.), dass dieses Modell nicht sinnvoll ist.

(b) [8 Punkte] Nach Verwerfen von Modell (1) fokussieren Sie auf Finanzmarktmodell (2),
um eine Europäische Call-Option auf die Aktie der „Sustainable Energy AG“ mit Fälligkeit
in t = 1 und Ausübungspreis 63 e zu analysieren.

(i) [4 Punkte] Berechnen Sie die Replikationsstrategie für diese Call-Option und bewer-
ten Sie die Call-Option mithilfe der Kosten der Replikation.
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(ii) [3 Punkte] Ihr Praktikant findet diese Methodik viel zu „kompliziert“ und schlägt da-
her vor, den Preis der Call-Option mit Auszahlungsprofil Ccall1 als Erwartungswert
EP[Ccall1 /1,05] = 10 der diskontierten Auszahlung unter dem real-world Maß P zu be-
rechnen. Geben Sie eine Arbitrage-Strategie an, um dem Praktikanten zu verdeutli-
chen, dass sein Vorschlag nicht fachgerecht ist.

(iii) [1 Punkt] Geben Sie an, wie die Formel des Praktikanten modifiziert werden muss,
um eine fachgerechte Bewertung der Option vorzunehmen.

(c) [8 Punkte] Anschließend betrachten Sie Finanzmarktmodell (3), das Sie vorgeschlagen
haben.

(i) [4 Punkte] Bestimmen Sie für Finanzmarktmodell (3) die Menge aller äquivalenten
risikoneutralen Maße. Worin besteht der strukturelle Unterschied zu Finanzmarktmo-
dell (2)?

(ii) [4 Punkte] Bestimmen Sie explizit die Menge der arbitrage-freien Preise für den Con-
tingent Claim C1, definiert durch

C1(ω1) = 252, C1(ω2) = 63, C1(ω3) = 126.

Geben Sie mit Begründung an, ob C1 in diesem Modell replizierbar ist.

(d) [7 Punkte] ImMarkt wird weiterhin eine einjährigeEuropäische Put-Optionmit Ausübungs-
preis 63 e zumMarktpreis 12 e liquide gehandelt. Eine Kollegin stellt fest, dass dies exakt
der arbitrage-freie Preis dieser Put-Option in Finanzmarktmodell (2) ist, und schlägt daher
vor, das Finanzmarktmodell (2) um die Put-Option als primären Finanztitel zu erweitern,
d. h. die Put-Option wird Produkt 2 mit Preisprozess (S20;S

2
1) = (C

put
0 ;Cput1 ). Als Finanzde-

rivat betrachten Sie die Garantieposition

G1 = max{60 · S11, 3360},
die für ein Portfolio aus 60 Aktien zum Zeitpunkt 1 eineWertuntergrenze von 3360 e (Wert
des Aktienportfolios in t = 0) sichert.

Bestimmen Sie alle Strategien, mit denen die Auszahlung des Derivats G1 durch Handel
mit Sparbuch, Aktie und Put-Option repliziert werden kann, und bestimmen Sie die jewei-
ligen Kosten der perfekten Replikation. Welches finanzmathematische Grundprinzip wird
durch Ihre Berechnungen illustriert? Formulieren Sie dieses in Kurzform.
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Lösungsskizze:

(a) Die Aktie besitzt offensichtlich in beiden Szenarien eine höhere Rendite als das Sparbuch,
sodass die Aktie im Modell systematisch besser als das Sparbuch performt. Man könnte
daher ohne Risiko Gewinn generieren (Arbitragemöglichkeit), z. B. indem man heute Akti-
en auf Kredit (Vereinbarung der Rückzahlung in t = 1) erwirbt und in t = 1 den Kredit durch
Aktienverkäufe bedient sowie einen risikofreien Gewinn vereinnahmt.

(b) (i) Das Auszahlungsprofil der Call-Option beträgt zur Fälligkeit

Ccall1 (ω) = (S11(ω) – 63)
+ =
�
21 für ω = ω1,
0 für ω = ω2.

Für die Replikationsstrategie ϑ = (ϑ0,ϑ1) (beschrieben durch die Stückzahlen von
Sparbuch und Aktie) und den zugehörigen Wert Vϑ1 in t = 1 muss gelten

Ccall1 (ω) = Vϑ1 (ω) = S
0
1(ω) · ϑ0 +S11(ω) · ϑ1, ω ∈ {ω1,ω2}.

Hieraus resultiert das lineare Gleichungssystem

1,05 · ϑ0 + 84 · ϑ1 = 21,

1,05 · ϑ0 + 42 · ϑ1 = 0,

dessen Lösung gegeben ist durch ϑ1 = 0,5, ϑ0 = –20. Die Replikationsstrategie
besteht also im Kauf von 0,5 Aktien sowie einer Kreditaufnahme in Höhe von 20 e.
Das hierfür erforderliche Anfangskapital beträgt

Ccall0 = S00 · ϑ0 +S10 · ϑ1 = 1 · (–20) + 56 · 0,5 = 8.

(ii) Wäre EP[Ccall1 /1,05] = 10 der Preis der Call-Option, so könnte man z. B. zum Zeit-
punkt 0 eine Einheit der Call-Option zum Preis 10 verkaufen, die Absicherungsstra-
tegie ϑ aus (i) zum Preis Ccall0 = 8 implementieren und das freie Kapital 10 – 8 = 2 in
das Sparbuch investieren. Diese Strategie ist zum Zeitpunkt 0 kostenneutral. Im Zeit-
punkt 1 muss nun die durch den Verkauf der Call-Option eingegangene Zahlungs-
verpflichtungCcall1 erfüllt werden, die Absicherungsstrategie liefert das Endvermögen
Ccall1 und die Anlage im Sparbuch bringt risikofrei den Ertrag 2 · 1,05 = 2,1 e. Damit
ist auch dieser Vorschlag des Praktikanten nicht konsistent mit der Abwesenheit von
Arbitrage und daher nicht fachgerecht.

(iii) Der arbitrage-freie Preis ergibt sich als Erwartungswert des diskontierten Auszah-
lungsprofils unter dem äquivalenten risikoneutralen Maß Q (risikoneutrale Bewer-
tungsformel):

Ccall0 = EQ

�
Ccall
1

1,05

�
.
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(c) (i) Die Gewichte qi := Q[{ωi}] > 0, i = 1,2, 3, eines äquivalenten risikoneutralen Maßes
sind bestimmt durch

S10
S00

= EQ

�
S11
S01

�
=

S11
S01
(ω1) · q1 + S11

S01
(ω2) · q2 + S11

S01
(ω3) · q3

sowie die Nebenbedingung q1+q2+q3 = 1. Durch Einsetzen der Werte im konkreten
Modell ergibt sich

56 = 80q1 + 80q2 + 40q3 = 80(1 – q3) + 40q3 = 80 – 40q3.

Es folgt q3 = 0,6, q1 + q2 = 0,4. Für jedes α ∈ (0, 1) definieren die Gewichte
q1(α) = 0,4 · α, q2(α) = 0,4 · (1 – α), q3(α) = 0,6 ein risikoneutrales Maß Qα, das zu
P äquivalent ist.

In Modell (3) können Auszahlungsprofile, die in den Szenarien ω1 und ω2 unter-
schiedliche Auszahlungen liefern, nicht repliziert werden, d. h. Modell (3) ist unvoll-
ständig (siehe auch 2. Fundamentalsatz).

(ii) Für den Contingent Claim C1(ω1) = 252, C1(ω2) = 63, C1(ω3) = 126 berechnet man
unter jedem der risikoneutralen Maße Qα, α ∈ (0, 1), aus (i) einen arbitrage-freien
Preis

C0,α = EQα

� C1
1,05

�
= 1

1,05
�
C1(ω1) · q1(α) +C1(ω2) · q2(α) +C1(ω3) · q3(α)�

= 240 · 0,4 · α + 60 · 0,4 · (1 – α) + 120 · 0,6
= 96 + 72α.

Dieser hängt explizit von α ∈ (0, 1) ab. Man erhält die Menge der arbitrage-freien
Preise C0 = (96, 168), also ein ganzes Preisintervall. Der Contingent Claim ist nicht
replizierbar, da anderenfalls der arbitrage-freie Preis eindeutig wäre und den Kosten
der perfekten Replikation entsprechen würde.

Bemerkung: Die replizierbaren Contingent Claims besitzen für (ϑ0,ϑ1) ∈ R2, inter-
pretiert als Einheiten von Sparbuch und Aktie, die Struktur

C1(ω) = ϑ0S01(ω) + ϑ
1S11(ω), ω ∈ Ω,

stellen also eine Linearkombination der primären Finanztitel dar. Insbesondere kann
im vorliegenden Modell Replizierbarkeit nur vorliegen, wenn die Auszahlungen eines
Contingent Claims in den Szenarien ω1,ω2 identisch sind. Dies liefert eine alterna-
tive Begründung der Nicht-Replizierbarkeit.

(d) Für die Replikationsstrategie ϑ = (ϑ0,ϑ1,ϑ2) (beschrieben durch die Stückzahlen von
Sparbuch, Aktie und Put-Option) und den zugehörigen Portfoliowert Vϑ1 in t = 1 muss
gelten

G1(ω) = Vϑ1 (ω) = S
0
1(ω) · ϑ0 +S11(ω) · ϑ1 +Cput1 (ω) · ϑ2, ω ∈ {ω1,ω2}.
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Hieraus resultiert das lineare Gleichungssystem

1,05 · ϑ0 + 84 · ϑ1 + 0ϑ2 = 5040

1,05 · ϑ0 + 42 · ϑ1 + 21ϑ2 = 3360

mit zwei Gleichungen und drei Unbekannten. Dieses besitzt unendlich viele Lösungen
ϑ = (ϑ0,ϑ1,ϑ2), nämlich

ϑ = (ϑ0,ϑ1,ϑ2) = (4800 – 80ϑ1,ϑ1, 2ϑ1 – 80), ϑ1 ∈ R.
Das erforderliche Anfangskapital beträgt für jede dieser Replikationsstrategien

Vϑ0 = S00 · ϑ0 +S10 · ϑ1 +Cput0 · ϑ2
= 1 · (4800 – 80ϑ1) + 56 · ϑ1 + 12 · (2ϑ1 – 80) = 3840.

Dies illustriert das Law of One Price: Ist ein Contingent Claim replizierbar, so sind die
Kosten der Replikation unabhängig von der gewählten Replikationsstrategie.

Bemerkung: Alternative Parameterisierungen der Replikationsstrategien sind möglich.
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Aufgabe 4. [Zinsen, Zinsprodukte, Zinssensitivitäten] [22 Punkte]

(a) [5 Punkte] Ein n-jähriger Standardbond ist charakterisiert durch die Zahlungsreihe
{Z, . . . , Z, Z + N} seiner Zins- und Tilgungszahlungen. Dabei bedeute N den Nennwert
des Bonds und Z = N · i die Höhe der jeweiligen (nachschüssigen) Zinszahlungen, wobei
i die Nominalverzinsung des Bonds bezeichne.

(i) [3 Punkte] Bestimmen Sie einen allgemeinen Ausdruck für den fairen Wert (Barwert)
des Bonds unter Verwendung der geometrischen Summe, wenn ein fristigkeitsunab-
hängiger Marktzins in Höhe von r zugrunde gelegt wird.

(ii) [2 Punkte] Weisen Sie auf der Grundlage von (i) nach, dass im Falle r = i der faire
Wert des Bonds seinem Nennwert entspricht (Pari-Notierung)!

(b) [9 Punkte] Betrachten Sie eine zweijährige Stufenzinsanleihe, die im ersten Jahr einen Ku-
pon von 2% und im zweiten Jahr einen Kupon von 5% aufweist. Die Kupons sind jeweils
am Jahresende fällig. Der Nennwert der Anleihe beträgt 100 e. Das aktuelle Marktzinsni-
veau ist flach und liegt bei 4% p.a..

(i) [2 Punkte] Berechnen Sie den heutigen Marktpreis der Anleihe.

(ii) [3 Punkte] Schätzen Sie die prozentuale Preisveränderung der Anleihe unter Ver-
wendung des Durationskonzepts ab. Nehmen Sie an, dass sich das Marktzinsniveau
um einen Prozentpunkt (=100 Basispunkte) reduziert.

(iii) [4 Punkte] Verwenden Sie nunmehr Duration und Konvexität zur Abschätzung der
Preisveränderung. Wie groß ist die prozentuale Preisveränderung, wenn sich das
Marktzinsniveau um einen Prozentpunkt reduziert?

(c) [8 Punkte] Ein Investor möchte einen Anlagebetrag von 10.000 e bei einem derzeitigen
Marktzins von 4% p. a. und flacher Zinsstruktur in festverzinsliche Wertpapiere investie-
ren. Ihm stehen Zerobonds mit Nennwert 1 sowie einer Restlaufzeit von einem Jahr bzw.
alternativ sieben Jahren zur Verfügung.
Gehen Sie von einer hälftigen Aufteilung (in Geldeinheiten, nicht in Stückzahlen) des In-
vestitionsbudgets aus.

(i) [7,5 Punkte] Berechnen Sie das Vermögen des Investors nach vier Jahren, wenn
sich der Marktzins nach der Investition

• nicht ändert,

• unmittelbar nach Anlage auf 2% absinkt und im Weiteren dort verbleibt,

• unmittelbar nach Anlage auf 6% ansteigt und im Weiteren dort verbleibt.

(ii) [0,5 Punkte] Vergleichen Sie die Vermögensposition des Investors in den Szenarien
mit einer Zinsänderung gegenüber dem Szenario ohne Zinsänderung.
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Lösungsskizze:

(a) (i) Der Barwert der Zahlungsreihe ist gegeben durch (q = 1 + r)

Zq–1 + Zq–2 + . . . + Zq–n +Nq–n = Zq–n(qn–1 + . . . + q + 1) +Nq–n

= Z
qn – 1

qn(q – 1)
+Nq–n

=
Z

r
(1 – q–n) +Nq–n.

(ii) Mit Z = N · i und r = i folgt aus (i)

BW0(r) =
Ni

i
(1 – q–n) +Nq–n = N.

Alternativ mit v = q–1:

Zv + Zv2 + . . . + Zvn +Nvn = Zv(1 + . . . + vn–1) +Nvn

= Zv
1 – vn

1 – v
+Nvn

Mit Z = N · i und r = i folgt hieraus mit rv
1–v = 1

BW0(r) = N
rv

1 – v
(1 – vn) +Nvn = N.

(b) Es sei P(r) der Marktpreis der Stufenzinsanleihe in t = 0 bezogen auf den flachen Zins r.
Dann gilt:

P(r) = 2(1 + r)–1 + 105(1 + r)–2,

P′(r) = –2(1 + r)–2 – 210(1 + r)–3,

P′′(r) = 4(1 + r)–3 + 630(1 + r)–4.

(i) Es gilt P(0,04) = 99,00.

(ii) Die modifizierte Duration berechnet sich zu

DURM(0,04) = –
P′(0,04)
P(0,04)

=
188,54

99,00
= 1,90

und entsprechend gilt

ΔP/P ≈ –DURM(0,04)(–0,01) = 0,0190.

Die approximative Wertsteigerung beträgt somit 1,90%.
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(iii) Die (relative) Konvexität ist gegeben durch

CONV(0,04) =
P′′(0,04)
P(0,04)

=
542,08

99,00
= 5,48.

Hieraus folgt

ΔP/P ≈ –DURM(0,04)(–0,01) + 1
2 CONV(0,04)(–0,01)

2

= 0,0190 + 0,0003 = 0,0193.

Die approximative Wertsteigerung beträgt nun 1,93%.

(c) (i) • Keine Zinsänderung:

5.000 · 1,044 + 5.000 · 1,044 = 10.000 · 1,044 = 11.698,59

• Zinsrückgang auf 2%:

In t = 0 betragen die Marktpreise der Zerobonds mit Nennwert 1 und mit Rest-
laufzeit von einem bzw. sieben Jahren bei Bewertung zumMarktzins 1,04–1 bzw.
1,04–7. Insofern können zu Beginn bei hälftiger Aufteilung des Startkapitals

5.000/1,04–1 = 5.200,00 und 5.000/1,04–7 = 6.579,66

Einheiten der Zerobonds mit Restlaufzeit von einem bzw. sieben Jahren erwor-
ben werden.

– Entwicklung Zerobond 1: Rückzahlung zu 1 in t = 1, dannWiederanlage über
3 Jahre zu 2%

– Entwicklung Zerobond 2: Wert in t = 4 entspricht der über 3 Jahre abgezins-
ten Rückzahlung von 1 in t = 7 mit 2%.

– Wert in t = 4 insgesamt somit:

5.200,00 · 1,023 + 6.579,66 · 1,02–3 = 5.518,28 + 6.200,16

= 11.718,44

• Zinsanstieg auf 6%:

Analog:

5.200,00 · 1,063 + 6.579,66 · 1,06–3 = 6.193,28 + 5.524,41

= 11.717,69.

(ii) In beiden Szenarien mit einer Zinsänderung ist das Vermögen des Investors jeweils
höher als im Szenario mit unverändertem Zins.
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Aufgabe 5. [Derivatebewertung: Binomial- und Black-Scholes-Modell] [28 Punkte]

(a) [7 Punkte] Die Aktien der „Sonne&Meer AG“ werden heute zum Kurs von 100 e pro
Stück gehandelt. Ihre Kollegen haben zur Bewertung einer Call-Option auf diese Aktie mit
Ausübungspreis 120 e und mit Fälligkeit in t = 2 den Aktienpreisprozess (St)t=0,1,2 durch
ein zweiperiodiges Binomialmodell mit Periodenzins r = 5% auf dem Sparbuch modelliert.
Berechnungen ergeben als heutigen Preis der Call-Option Ccall0 = 8,4898 e sowie die
folgende Replikationsstrategie:

Call-Option t = 0 t = 1,ω = (u, ·) t = 1,ω = (d, ·)
Einheiten Aktie 0,4800 1,0000 0,1333
Einheiten Sparbuch -39,5102 -108,8435 -9,7959

Ihr Arbeitsauftrag ist die Bewertung und Replikation der zweijährigen Put-Option mit Aus-
übungspreis 120 e; Sie möchten diese Aufgabe effizient lösen.

(i) [2 Punkte] Geben Sie für obiges Binomialmodell - mit kurzer Begründung - die Put-
Call-Parität für die Preise von Call- und Put-Option in t = 0 an.

(ii) [5 Punkte] Nutzen Sie diesen Zusammenhang, um den arbitrage-freien Preis in t = 0
sowie die Replikationsstrategie der Put-Option zu ermitteln.

(b) [15 Punkte] Im Markt wird eine Europäische Put-Option auf die Aktie der „Green Finance
AG“ mit Ausübungspreis 160 e und mit Fälligkeit in t = 2 gehandelt. Zur Validierung des
Marktpreises verwenden Sie das zweiperiodige Binomialmodell mit Periodenzins r = 5%
auf dem Sparbuch und folgender Spezifikation des Aktienpreisprozesses („Up-Faktor“ u
und „Down-Faktor“ d für 0 < d < u):

������:
XXXXXXz

S0 = 100
S1((u, ·)) = 140
S1((d, ·)) = 90 ������:

XXXXXXz
������:

XXXXXXz

S2((u,u)) = 196

S2((u,d)) = S2((d,u)) = 126

S2((d,d)) = 81

(i) [9 Punkte] Berechnen Sie durch risikoneutrale Bewertung die arbitrage-freien Preise
der Put-Option zu den Zeitpunkten t = 0,1.

(ii) [6 Punkte] Berechnen Sie mithilfe der arbitrage-freien Preise aus (i) die Replikations-
strategie, beginnend in t = 0, für die Put-Option.

(c) [6 Punkte] Durch Grenzübergang in zeitdiskreten Binomialmodellen resultieren Black-
Scholes-Preise von Finanzderivaten.

(i) [3 Punkte] Geben Sie die Grenzverteilung der terminalen Aktienpreise aus den ap-
proximierenden Binomialmodellen an und erläutern Sie den Zusammenhang mit der
Verteilung des Aktienkurses im Black-Scholes-Modell.
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(ii) [3 Punkte] Beschreiben Sie mithilfe entsprechender Formeln, wie man ausgehend
von der Grenzverteilung mithilfe der Dichte der Standardnormalverteilung den Preis
einer Europäischen Put-Option auf eine Aktie mit Ausübungspreis K > 0 und Fällig-
keit T berechnen kann.

Achtung: Die Durchführung der Berechnung ist nicht gefordert.

Lösungsskizze:

(a) (i) Aufgrund der Identität (S2 –120)+ – (120–S2)+ = S2 –120 besteht auf der Ebene der
Auszahlungsprofile der Optionen der Zusammenhang

Cput2 = Ccall2 –S2 + 120.

Durch risikoneutrale Bewertung (bzw. das „Law of One Price“) folgt für die Preise der
Optionen die Put-Call-Parität

Cput0 = Ccall0 –S0 + 120 · 1,05–2.

(ii) • Einsetzen der Werte in die Put-Call-Parität liefert konkret

Cput0 = 8,4898 – 100 + 120 · 1,05–2 = 17,3333.

• Die Auszahlung der Put-Option ergibt sich als Kombination der Call-Option, ei-
ner Short-Position von einer Aktie sowie dem Vermögen aus der Anlage von
120 · (1,05)–2 = 108,8435 e in t = 0 im Sparbuch („buy-and-hold“). Damit ist aus
der Replikationsstrategie der Call-Option die Replikation der Put-Option direkt
ablesbar (jeweils eine Aktie weniger, jeweils 108,8435 Einheiten des Sparbuchs
mehr):

t = 0 t = 1,ω = (u, ·) t = 1,ω = (d, ·)
Call-Option Einheiten Aktie 0,4800 1,0000 0,1333

Einheiten Sparbuch -39,5102 -108,8435 -9,7959
Put-Option Einheiten Aktie -0,5200 0,0000 -0,8867

Einheiten Sparbuch 69,3333 0,0000 99,0476

(b) (i) Die Put-Option liefert zur Fälligkeit die Auszahlungen

Cput2 := (160 –S2)+ =


0 für ω = (u,u),
34 für ω = (u,d),
34 für ω = (d,u),
79 für ω = (d,d).

Aus dem Aktienpreisprozess sind weiterhin d = 0,9 und u = 1,4 ablesbar. Damit sind
die einperiodigen Übergangswahrscheinlichkeiten unter dem eindeutigen äquivalen-
ten Martingalmaß Q gegeben durch

q = 1+r–d
u–d = 0,3
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für eine Aufwärtsbewegung sowie durch 1 – q = 0,7 für eine Abwärtsbewegung der
Aktie.

Bezeichnen nun Cputt die arbitrage-freie Preise der Put-Option in t = 0,1, 2, so gilt

Cput1 ((u, ·)) = EQ
� 1
1+rC

put
2 |F1
�
(u, ·)

= 1
1+r [C

put
2 ((u,u))q +Cput2 ((u,d))(1 – q)]

= 1
1,05
�
0 · 0,3 + 34 · 0,7� = 22,6667,

Cput1 ((d, ·)) = EQ
� 1
1+rC

put
2 |F1
�
(d, ·)

= 1
1+r [C

put
2 ((d,u))q +Cput2 ((d,d))(1 – q)]

= 1
1,05
�
34 · 0,3 + 79 · 0,7� = 62,3810

und rekursiv ergibt sich

Cput0 = EQ
� 1
1+rC

put
1

�
= 1
1+r [C

put
1 ((u, ·))q +Cput1 ((d, ·))(1 – q)]

= 1
1,05
�
22,6667 · 0,3 + 62,3810 · 0,7� = 48,0635.

Bemerkung: Mit den Gewichten

Q[{ω}] =


0,09 für ω = (u,u),
0,21 für ω = (u,d),
0,21 für ω = (d,u),
0,49 für ω = (d,d),

des äquivalenten Martingalmaßes Q berechnet man alternativ direkt

Cput0 = EQ

�
Cput
2

(1,05)2

�
= 1

(1,05)2 (0 · 0,09 + 34 · 0,21 + 34 · 0,21 + 79 · 0,49) = 48,0635.

(ii) Die in (i) berechneten arbitrage-freien Preise entsprechen im vollständigen Binomi-
almodell den Kosten der perfekten Replikation in den jeweiligen Knoten. Die Berech-
nung der jeweiligen Stückzahlen x in der Aktie und y im Sparbuch mit Wertentwick-
lung (1; 1 + r; (1 + r)2) = (1; 1,05; 1,1025) erfolgt in jedem Knoten durch Lösen eines
linearen Gleichungssystems.

t = 1,ω = (u, ·):
196x + 1,1025y = 0

126x + 1,1025y = 34

Damit gilt x = –0,4857, y = 86,3476.
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t = 1,ω = (d, ·):
126x + 1,1025y = 34

81x + 1,1025y = 79

Damit gilt x = –1,0000, y = 145,1247.

t = 0:

140x + 1,05y = 22,6667

90x + 1,05y = 62,3810

Damit gilt x = –0,7943, y = 127,4933.

(c) (i) Die Verteilungen der Aktienpreise zum Fälligkeitszeitpunkt T unter den Martingalma-
ßen der approximierenden Binomialmodellle konvergieren schwach gegen die Log-
Normalverteilung LN (lnS0 + rT – 1

2σ
2T,σ2T), wobei S0 der Startkurs der Aktie ist, r

die Zinsrate darstellt und σ die Volatilität bezeichnet. Dies ist ist die Verteilung der
Zufallsvariable

ST := S0e
σWT+(r–

1
2σ

2)T

mit WT ∼ N (0,T), die unter dem Martingalmaß Q den terminalen Aktienpreis im
Black-Scholes-Modell modelliert.

(ii) Als Grenzwert der Preise der Put-Option ergibt sich der Black-Scholes-Preis

Cput0 = e–rTEQ[(K –ST)+] = e–rTEQ[(K –S0e
σWT+(r–

1
2σ

2)T)+].

Wegen
p
TX ∼ N (0,T) für X ∼ N (0, 1) gilt

Cput0 = e–rTEQ[(K –S0e
σ
p
TX+(r–12σ

2)T)+]

= e–rT
∫ ∞
–∞

(K –S0e
σ
p
Tx+(r–12σ

2)T)+ϕ(x)dx,

wobei ϕ(x) = 1p
2π

exp(–12x
2) die Dichte der Standardnormalverteilung bezeichnet.

Durch konkretes Berechnen des Integrals resultiert die Black-Scholes-Formel für die
Put-Option.
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Aufgabe 6. [Value at Risk: Eigenschaften, Alternativen, Anwendungen] [25 Punkte]

Hinweis: Für die Verteilungsfunktion  und die Dichte ϕ der Standardnormalverteilung gilt
–1(0,005) = -2,5758, –1(0,01) = -2,3263, ϕ(-2,3263) = 0,0267.

(a) [5 Punkte] Definieren Sie die Risikomaße Value at Risk (V@R), Average Value at Risk
(AV@R) und Tail Value at Risk (TV@R) für Finanzpositionen formal. Geben Sie für den
V@R und den TV@R eine ökonomische Interpretation an.

(b) [6 Punkte] Gegeben seien zwei stochastisch unabhängige Finanzpositionen X1 und X2,
deren Verteilungen spezifiziert sind durch:

P[Xi = 50] = 0,97,P[Xi = –200] = 0,03 für i = 1,2.

Bestimmen Sie zum Niveau λ = 0,05 den Value at Risk für die Finanzpositionen X1 und
X2 sowie für die aggregierte Position X1+X2. Erläutern Sie kurz, welches Defizit des Value
at Risk Ihr Berechnungsergebnis verdeutlicht.

(c) [3 Punkte] Angenommen, eine Versicherungsgruppe mit Risikobudget B (Obergrenze für
das Risikokapital) besteht aus drei Tochtergesellschaften, die Versicherungsgeschäft be-
treiben. Die Basiseigenmittel der Tochtergesellschaften im Einjahreshorizont seien gege-
ben durch die Zufallsvariablen X1,X2,X3, die konsolidierten Basiseigenmittel der Gruppe
durch X = X1 +X2 +X3.

Erläutern Sie, wie der Vorstand der Gruppe ein Limit- und Schwellenwertsystem für die
Tochtergesellschaften etablieren kann, falls zur Risikomessung der Average Value at Risk
verwendet wird.

(d) [7 Punkte] Im einem Bericht finden Sie für eine Finanzposition X Angaben zum Value at
Risk zum Niveau 0,005 sowie zur Solvabilitätskapitalanforderung (SCR) (definiert über
den Mean Value at Risk zum Niveau 0,005):

V@R0,005(X) = 1.390.960, SCR(X) = 3.090.960.

Sie interessieren sich jedoch zusätzlich für das Risiko, das mit dem Average Value at Risk
(AV@R) gemessen wird. Nehmen Sie für Ihre weiteren Berechnungen vereinfachend an,
dass X normalverteilt ist.
(i) [3 Punkte] Leiten Sie Formeln her, mit denen Sie den V@R0,005(X) und SCR(X) im

Normalverteilungskontext berechnen können.
(ii) [4 Punkte] Berechnen Sie den AV@R von X zum Niveau 0,01.

Hinweis: Für X ∼ N (E[X],σ2(X)) gilt AV@Rλ(X) = –E[X] +
1
λϕ(

–1(λ))σ(X).

(e) [4 Punkte] Ihre Versicherung hält heute eine Finanzposition, die aus 1.000 Aktien sowie
einer ausfallfreien Nullkuponanleihe (Nennwert: 100.000 e, Restlaufzeit: 1 Jahr) besteht.
Der aktuelle Preis pro Aktie beträgt S0 = 5 e und statistische Analysen deuten darauf
hin, dass die jährliche Log-Rendite R der Aktie normalverteilt mit Erwartungswert 4% und
Standardabweichung 6% ist.

Berechnen Sie den Value at Risk zum Niveau 0,005 dieser Finanzposition für den Ein-
jahreshorizont.
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Lösungsskizze:

(a) Definitionen der Risikomaße zum Niveau λ ∈ (0, 1):
• V@Rλ(X) := inf{m ∈ R|P[X +m < 0] ≤ λ}
• AV@Rλ(X) :=

1
λ

∫ λ
0 V@Rα(X)dα

• TV@Rλ(X) := E[–X| –X > V@Rλ(X)]

Interpretationen:

• V@Rλ(X) ist der kleinste Geldbetrag, den man zu einer Finanzposition X hinzufügen
muss, sodass die Wahrscheinlichkeit eines Verlustes kleiner oder gleich λ ausfällt.

• TV@Rλ(X) entspricht dem bedingten erwarteten Verlust gegeben, dass der Verlust
–X den Value at Risk V@Rλ(X) überschreitet.

(b) Aus der Definition des Value at Risk ist unmittelbar ablesbar:

V@R0,05(X1) = V@R0,05(X2) = –50.

Die Zufallsvariable X1 +X2 nimmt nur die folgenden Werte an:

X1 +X2 =


100, wenn X1 = X2 = 50
–150, wenn X1 = 50,X2 = –200 oder X1 = –200,X2 = 50
–400, wenn X1 = X2 = –200

Für die Eintrittswahrscheinlichkeiten gilt hierbei:

P[X1 +X2 = 100] = P[X1 = 50,X2 = 50] = P[X1 = 50]P[X2 = 50]

= (0,97)2 = 0,9409

P[X1 +X2 = –150] = P[X1 = 50,X2 = –200] +P[X1 = –200,X2 = 50]

= 2 · P[X1 = 50]P[X2 = –200]
= 2 · 0,03 · 0,97 = 0,0582

P[X1 +X2 = –400] = P[X1 = –200,X2 = –200]

= P[X1 = –200]P[X2 = –200]

= (0,03)2 = 0,0009

Hieraus ist ablesbar: V@R0,05(X1 +X2) = 150. Insbesondere gilt:

150 = V@R0,05(X1 +X2) > V@R0,05(X1) + V@R0,05(X2) = –100.

Das Ergebnis verdeutlicht, dass das Risikomaß V@R im Allgemeinen nicht subadditiv ist,
d. h. der V@R kann ökonomisch sinnvolle Diversifikation zwischen Risiken bestrafen.

Seite 19 von 28



Finanzmathematik und Risikobewertung
am 17.Oktober 2025

(c) Das Risikomaß AV@Rλ, λ ∈ (0, 1), ist im Gegensatz zum V@Rλ stets subadditiv und
bestraft somit Diversifikation nicht. Für die Versicherungsgruppe bedeutet dies speziell

AV@Rλ(X) ≤ AV@Rλ(X1) + AV@Rλ(X2) + AV@Rλ(X3).

Anstatt auf Ebene der Tochtergesellschaften Mikromanagement zu betreiben, kann der
Vorstand der Gruppe den Tochtergesellschaften auch individuelle RisikobudgetsB1,B2,B3
mit B1+B2+B3 = B zuweisen, d. h. die Tochtergesellschaften können das Geschäft autark
steuern und müssen nur sicher stellen, dass für das individuelle Risiko AV@Rλ(Xi) ≤ Bi,
i = 1,2, 3, gilt. In diesem Fall gilt auch

AV@Rλ(X) ≤ AV@Rλ(X1) + AV@Rλ(X2) + AV@Rλ(X3) ≤ B1 +B2 +B3 = B,

d. h. halten die Tochtergesellschaften die individuellen Risikobudgets ein, so ist auch auf
Gruppenebene das Budget sicher eingehalten.

(d) (i) Für die Normalverteilung (stetige Verteilung) ist der Value at Risk zum Niveau
λ = 0,005 bestimmt durch λ = P[X + V@Rλ(X) < 0]. Hierbei gilt

P[X + V@Rλ(X) < 0] = P
�X–E[X]

σ(X) ≤ –V@Rλ(X)–E[X]
σ(X)

�
= 
�–V@Rλ(X)–E[X]

σ(X)

�
,

da die normierte Zufallsvariable (X–E[X])/σ(X) standardnormalverteilt ist. Dies liefert

–1(λ) = –V@Rλ(X)–E[X]
σ(X)

und damit nach Umformen

V@Rλ(X) = –E[X] ––1(λ)σ(X). (1)

Insbesondere folgt (z. B. mit der Cash-Invarianz des Value at Risk)

SCR(X) = V@R0,005(X) + E[X] = ––1(0,005)σ(X). (2)

(ii) Durch Umstellen der Formeln (1) und (2) folgt aus dem gegebenen Zahlenwerk

E[X] = SCR(X) – V@R0,005(X) = 1.700.000,

σ(X) = – SCR(X)
–1(0,005) = 1.200.000.

Dies liefert durch Einsetzen in die Formel aus dem Hinweis

AV@R0,01(X) = –E[X] + ϕ(–1(0,01))
0,01 · σ(X)

= –1.700.000 + ϕ(–1(0,01))
0,01 · 1.200.000 = 1.504.000.

(e) In t = 1 ist der Wert der Finanzposition gegeben durch

V1 = 1.000 · S0 · exp(R) + 100.000 = 5.000exp(R) + 100.000,
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wobei der Zufall nur durch die zufällige Rendite R ∼ N (0,04; (0,06)2) getrieben wird.

Mit q0,005 als Notation für das Quantil einer Zufallsvariable zum Niveau 0,005 und den
Rechenregeln der Quantiltransformation für die wachsende Funktion r 7→ 5.000exp(r) +
100.000 folgt somit

V@R0,005(V1) = –q0,005(V1)

= –q0,005(5.000exp(R) + 100.000)

= –(5.000exp(q0,005(R)) + 100.000)

= –5.000exp(0,04 + 0,06–1(0,005)) – 100.000

= –104.458,85.
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Aufgabe 7. [Grundkonzepte der Risikomessung] [12 Punkte]

Geben Sie jeweils mit Begründung an, ob die folgenden Aussagen „wahr“ oder „falsch“ sind.
Beachten Sie, dass Punkte nur vergeben werden, wenn die zutreffende Antwort korrekt
begründet ist.

(a) [1 Punkt] Die Semi-Standardabweichung spiegelt den zweiseitigen Risikobegriff wider.

(b) [1 Punkt] Die Überprüfung des Roulette-Rads im Spielcasino ergab keinen Verdacht auf
Manipulationen. Beim Setzen auf „Rot“ liegt – im Sinne von Knight – trotzdem Risiko vor.

(c) [2 Punkte] Das Risikomaß Standardabweichung ist immer subadditiv.

(d) [1 Punkt] Das Risikomaß Value at Risk ist positiv homogen.

(e) [2 Punkte] Ist ρ ein kohärentes Risikomaß, so ist die zugehörige Akzeptanzmenge immer
konvex.

(f) [1 Punkt] Das Risikomaß ργ, γ > 0, definiert durch

ργ(X) := sup
Q∈M1

{EQ[–X] –
1
γH(Q|P)},

ist kohärent. Hierbei ist P ein Referenzmaß,M1 stellt die Menge der Wahrscheinlichkeits-
maße auf (Ω,F) dar und H(·|·) ist die relative Entropie.

(g) [1 Punkt] Für eine log-normalverteilte Aktienposition ist (bei identischemNiveau λ ∈ (0, 1))
der Average Value at Risk größer als der Tail Value at Risk.

(h) [2 Punkte] Der Beta-Faktor ist ein Maß für das systematische Risiko und nimmt für den
diversifizierten Marktindex den Wert 0 an.

(i) [1 Punkt] Das SCR, definiert als Mean-Value-at-Risk, ist ein monetäres Risikomaß und
kann daher unmittelbar als Kapitalanforderung interpretiert werden.

Lösungsskizze:

(a) falsch: Die Semi-Standardabweichung σ+(X) =
Æ
E[((E[X] –X)+)2] (hier einer Finanzposi-

tion) misst nur „ungünstige“ Abweichungen vom Erwartungswert und ist somit ein Beispiel
für den einseitigen Risikobegriff.

(b) wahr: Da das Roulette-Rad nicht manipuliert ist, ist insbesondere die Eintrittswahrschein-
lichkeit für „Rot“ bekannt. Dies entspricht im Sinne von Knight „Risiko“.

(c) wahr: Nach elementarer Stochastik gilt für die Varianz σ2 (unabhängig von den Vertei-
lungen) σ2(X +Y) = σ2(X) + σ2(Y) + 2ρσ(X)σ(Y), wobei ρ die Korrelation zwischen X und
Y bezeichnet. Wegen ρ ≤ 1 folgt

σ(X +Y) =
q
σ2(X) + σ2(Y) + 2ρσ(X)σ(Y) ≤

q
σ2(X) + σ2(Y) + 2σ(X)σ(Y)

=
q
(σ(X) + σ(Y))2 = σ(X) + σ(Y).
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(d) wahr: Für jedes α ≥ 0 und jede Finanzposition X gilt per Quantiltransformation

V@Rλ(αX) = –qαX(λ) = –αqX(λ) = αV@Rλ(X).

(e) wahr: Es seien X,Y ∈ A, d. h. es gilt ρ(X) ≤ 0, ρ(Y) ≤ 0. Dann gilt aufgrund der Konvexität
des kohärenten Risikomaßes ρ für jedes λ ∈ (0, 1) auch

ρ(λX + (1 – λ)Y) ≤ λρ(X) + (1 – λ)ρ(Y) ≤ 0,
also λX + (1 – λ)Y ∈ A.

(f) falsch: In der robusten Darstellung des konvexen Risikomaßes ργ müsste für die Ko-
härenz die Straffunktion 1

γH(·|P) verschwinden; dies ist nicht der Fall, da im Allgemeinen
1
γH(Q|P) 6∈ {0,∞}.

(g) falsch: Die Log-Normalverteilung ist eine stetige Verteilung. Daher stimmen der Average
Value at Risk und der Tail Value at Risk der Aktienposition überein.

(h) falsch: Der Beta-Faktor eines Portfolios mit Rendite R ist definiert durch

βR := Cov(R,RM)/Var(RM)

(RM Rendite des Marktindex) und misst das systematische Risiko relativ zum Marktrisiko.
Es gilt βRM = 1.

(i) falsch: Die Cash-Invarianz ist verletzt:

SCR(X +m) = V@R0,005(X +m – E[X +m]) = V@R0,005(X – E[X])

= SCR(X) 6= SCR(X) –m.
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Aufgabe 8. [Markowitz-Ansatz, effiziente Portfolios] [19 Punkte]

Gegeben seien zwei Aktien mit zugehörigen Einperiodenrenditen R1 und R2. Für den Korrela-
tionskoeffizienten ρ := ρ(R1,R2) gelte –1 < ρ < 1.

(a) [4 Punkte] Es bezeichnen (xMVP, 1 –xMVP) die Investmentgewichte des global varianzmi-
nimalen Portfolios. Weisen Sie nach, dass

xMVP =
Var(R2) – Cov(R1,R2)

Var(R1) + Var(R2) – 2Cov(R1,R2)

gilt.

Hinweis: Es genügt hierbei die Überprüfung der notwendigen Bedingung für das Vorliegen
eines Minimums.

(b) [2 Punkte] Begründen Sie, warum der Ausdruck für xMVP aus (a) wohldefiniert ist!

(c) [3 Punkte] Welchen Wert muss die Kovarianz Cov(R1,R2) annehmen, damit xMVP = 1
6

beträgt?

(d) [3 Punkte] Unter welchen Bedingungen an Cov(R1,R2) gilt 0 ≤ xMVP ≤ 1, d. h. es können
sowohl Leerverkäufe als auch eine Kreditaufnahme ausgeschlossen werden?

(e) [3 Punkte]Weisen Sie nach, dass im Zwei-Aktien-Fall mit Investmentgewichten (x, 1–x) für
jedes 0 ≤ x ≤ 1 die Portfolio-Varianz σ2P(x) monoton steigend im Korrelationskoeffizienten
ρ ist.

(f) [4 Punkte] Im Zwei-Aktien-Fall liegt eine Diversifikation nach Markowitz vor, wenn es ein
Portfolio P (mit Rendite RP) aus beiden Aktien gibt, sodass

Var(RP) < min{Var(R1), Var(R2)}.

Setzen Sie im Weiteren 0 ≤ x ≤ 1 sowie Var(R2) < Var(R1) voraus. Die Größe xMVP ist
wie in Aufgabenteil (a) definiert.

(i) [1 Punkt] Warum liegt im Fall xMVP = 0 keine Diversifikation vor?

(ii) [1 Punkt] Warum kann der Fall xMVP = 1 nicht eintreten?

(iii) [2 Punkte] Offenbar ist xMVP > 0 ein geeignetes Diversifikationskriterium. Für welche
Werte des Korrelationskoeffizienten ρ ist unter dieser Bedingung dann Diversifikation
gesichert?

Lösungsskizze:

Es bezeichne R := xR1+(1–x)R2 die Rendite eines beliebigen Portfolios aus den beiden Aktien.
Es bezeichnen ferner σ2 := Var(R), σ21 := Var(R1), σ

2
2 := Var(R2) sowie C := Cov(R1,R2).
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(a) Es gilt damit
σ2 = σ2(x) = x2σ21 + (1 – x)

2σ22 + 2x(1 – x)C.

Bestimmung der varianzminimalen Position:

0 = dσ2
dx = 2xσ21 – 2(1 – x)σ

2
2 + 2C – 4xC.

Es folgt
2xσ21 + 2xσ

2
2 – 4xC = 2σ22 – 2C

und damit

xMVP =
σ22 –C

σ21 + σ
2
2 – 2C

.

(b) Der Ausdruck für xMVP ist wohldefiniert, falls der Nenner

σ21 + σ
2
2 – 2C = Var(R1 –R2)

positiv ist. Die Bedingung Var(R1 – R2) > 0 ist jedoch genau dann erfüllt, wenn R1 – R2
eine nicht-degenerierte Zufallsgröße ist, d. h. es gilt nicht R1 –R2 = c bzw.R1 = R2 + c für
eine Konstante c. Die perfekte lineare Abhängigkeit von R1 und R2 ist ausgeschlossen,
da nach Voraussetzung |ρ| < 1 gilt.

(c) Aus xMVP = 1
6 folgt

6(σ22 –C) = σ
2
1 + σ

2
2 – 2C bzw. 5σ22 – σ

2
1 = 4C.

Damit gilt insgesamt
C = 1

4 (5σ
2
2 – σ

2
1) =

5
4σ

2
2 –

1
4σ

2
1.

(d) Man beachte, dass gemäß Aufgabenteil (b) der Nenner des Ausdrucks xMVP wohldefiniert
ist. Damit folgt:

xMVP ≥ 0 ⇔ σ22 ≥ C

xMVP ≤ 1 ⇔ σ22 –C ≤ σ21 + σ22 – 2C ⇔ C ≤ σ21
Fazit: 0 ≤ xMVP ≤ 1⇔ C ≤ min{σ21,σ22}

(e)
σ2P(x) = σ

2
1x

2 + σ22(1 – x)
2 + 2ρx(1 – x)σ1σ2

dσ2P(x)
dρ = 2x(1 – x)σ1σ2 ≥ 0.

Damit ist σ2P monoton steigend in ρ.

(f) (i) Im Falle xMVP = 0 wäre es risikominimal zu 100% nur in die risikoärmere Aktie mit
Rendite R2 zu investieren.
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(ii) Im Falle xMVP = 1 wäre es risikominimal zu 100% in die Aktie mit Rendite R1 zu
investieren. Dies stellt einen Widerspruch zu σ22 < σ

2
1 dar.

(iii) Aus der Bedingung xMVP > 0 folgt aus Aufgabenteil (a) aufgrund von Cov(R1,R2) =
ρσ1σ2 zunächst

σ22 – ρσ1σ2 > 0

und damit insgesamt die Bedingung

ρ < σ2
σ1

für das Eintreten eines Diversifikationseffekts.
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Aufgabe 9. [Portfoliotheorie mit sicherer Anlage und CAPM] [13 Punkte]

(a) [7 Punkte] Gegeben sei ein rein riskantes Portfolio P, d. h. ein Portfolio aus der Menge
der durch reine Aktienmischung realisierbaren Portfolios. Betrachten Sie nun ein Misch-
portfolio, das mit einem bestimmten Anteil x (0 ≤ x < ∞) in P investiert ist und mit dem
restlichen Anteil in die sichere Anlage zum risikofreien Zins r0.

(i) [1 Punkt] Stellen Sie die Gesamtrendite Rx des Mischportfolios formelmäßig dar!

(ii) [3 Punkte] Bestimmen Sie nun den Anteil xN so, dass die Standardabweichung von
Rx einer vorgegebenen „Norm-Risikoposition“ σN entspricht!

(iii) [3 Punkte] Welche Rendite besitzt das solchermaßen definierte Mischportfolio mit
Norm-Risikoposition σN?

(b) [6 Punkte] Auf der Grundlage einer Lagrange-Optimierung ergibt sich die folgende funktio-
nale Form des effizienten Rands im Rahmen der Markowitz’schen Portfoliotheorie (σ2 ≥
0,009):

μ = 0,16 +
q
0,1(σ2 – 0,009).

Nehmen Sie nun an, dass zusätzlich eine risikofreie Anlage zu einem sicheren Zins von
r0 = 0,08 existiert, und bestimmen Sie die Gleichung der Tangentialgeraden!

Hinweis: Gehen Sie davon aus, dass ein Schnittpunkt von Tangentialgerade und dem
effizienten Rand existieren muss.

Lösungsskizze:

(a) (i) Für die Rendite des Mischportfolios gilt

Rx = x ·RP + (1 – x) · r0.

(ii) Zunächst ist die Standardabweichung von Rx allgemein zu bestimmen:

σ(Rx) = x · σ(RP).

Aus der Forderung σ(Rx) = σN ergibt sich dann mit σP := σ(RP) das Resultat
xN = σN/σP.

(iii) Zunächst ist der Erwartungswert von Rx zu bestimmen. Es gilt allgemein:

μ := E[Rx] = x · μP + (1 – x) · r0 = r0 + x · (μP – r0).
Mit x = xN resultiert hieraus:

μN := E[RxN ] = r0 + (σN/σP) · (μP – r0).
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(b) Die Schnittpunktbedingung lautet

0,08 + aσ = 0,16 +
q
0,1σ2 – 0,0009.

Auflösung nach σ ergibt:

(aσ – 0,08)2 = 0,1σ2 – 0,0009

(a2 – 0,1)σ2 – 0,16aσ + 0,0073 = 0

Da eine Tangente vorliegt, darf nur „ein Schnittpunkt“ existieren. Eine einwertige Nullstelle
liegt dann vor, wenn die Diskriminante B2 –4AC der quadratischen Gleichung Aσ2 +Bσ +
C = 0 null ist. Hieraus folgt

0,0256a2 – 0,0292a2 + 0,00292 = 0

a2 =
0,00292

0,0036
= 0,8111.

Aufgrund von a > 0 folgt hieraus a ≈ 0,9.
Die Gleichung der Tangentialgeraden ist somit gegeben durch

μ = 0,08 + 0,9σ.
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